
International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

43
http://hipore.com/ijsc

AN ACTOR-BASED APPROACH TO COORDINATING CROWD-
SOURCED SERVICES

Ahmed Abdel Moamen and Nadeem Jamali
Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada

moamen@agents.usask.ca, jamali@cs.usask.ca

Abstract
As personal mobile devices become gain popularity, not only is it possible receive a variety of services virtually
anywhere, the sensors on the same devices can also actively contribute real-time day from their contexts to be used in
services. A busy professional could find a restaurant to go to for a quick lunch based on information available from
smartphones of people already there having lunch, waiting to be seated, or even heading there. Also imagine a mid-
21st century fine-grained democracy where citizens might authorize use of a police officer’s firearm – in real time –
based on a live video feed of the scene. Although the programming required for offering a new service of this sort can
be significant if done from scratch, we argue that in many cases it does not. We identify core communication
mechanisms which underly many crowd-sourced services, and present preliminary design of a middleware which
implements them. Service designers may launch novel services over this middleware by simply plugging in small
pieces of service specific code.

This paper identifies the coordination mechanisms required for these crowd-sourced services as types of
multi-origin communication. We present details of how these core mechanisms can be implemented using Actors, and
introduce high-level programming constructs for launching a new service. In addition, we present our design of a
middleware for crowd-sourced services using multi-origin communication. Finally, we use examples to illustrate the
implementation of services.

Keywords: Crowd-sourced services, coordination, multi-origin communication, Actors.

__

1. INTRODUCTION
As personal computational devices such as smart phones,

Google glasses, etc., become ubiquitous, so do the sensors

(and potentially actuators) on those devices. Not only can

people receive services virtually anywhere, there is a way

for potential services to rely on real-time snapshot of every

place that a device might be located. Consider a restaurant

recommendation service which samples data collected about

experiences of clients at a number of restaurants in a

neighborhood and ranks them according to the service

experience of the clients currently there. The source of the

data could be sensor feeds on clients’ mobile devices, which

could guess whether they are waiting in line, seated,

enjoying their meals, paying or leaving. Consider, another

service combining real-time routing information -- such as

is collected for showing traffic information on Google Maps

-- with wait times at hospital emergencies to recommend

which one to go to when in need of urgent care. If we also

consider user input explicitly or implicitly entered into the

devices, another class of services can be offered, from real-

time polling, to instant censuses, and even voting in

elections. The generation growing up in the world of Twitter

and Facebook may find it quaint that democracies hold

elections only once every few years. Why not have much

more frequent votes on much finer grained decisions

effecting citizens every day? It is entirely conceivable that

in the not so distant future, a form of fine-grained

democracy may emerge where citizens get to vote – in real

time – on if and when a police officer’s firearm is enabled,

based on a live video feed of the scene

We are interested in an opportunity created by the

similarity in the patterns of communication required for

such services, which we refer to as multi-origin

communication. Previously (Geng & Jamali, 2013)

differentiated between single-origin and multi-origin types

of multi-sender communication.1 The single-origin type of

multi-sender communication is initiated by a single party

which solicits interest from other parties to join together in

sending a particular message. An example of this would be

a workplace petition. Using email, the option usually

available is for one person to be the recognizable active

sender of the petition, with the remaining people passively

listed in the “cc” field. The alternative we are interested in

is to allow all senders to be equally responsible for sending

such a message, despite its single point of origin. In multi-

origin (implicitly also multi-sender) communication, the

expectation is that that there is no single party who must

1

We have previously referred to multi-sender

communication as many-to-many communication; however,

the emphasis was on the multiple senders, because there is

sufficient existing research on multiple recipients. For

multi-origin multi-sender messages, we skip multi-sender

because it is implicit.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

44
http://hipore.com/ijsc

take the lead. In other words, multiple parties may

autonomously launch messages which could then be

aggregated in order to create a group message.

It turns out that unlike single-origin multi-sender

messages, multi-origin messages require a setup in advance.

Consider a public square where a number of citizens

spontaneously begin to gather to party or protest. In this

context, the physical space of the square serves as part of a

setup which allows mutual observation, an opportunity to

join in or leave, to endorse, reject or refine the collective

message or experience over time. The closest electronic

equivalent of such a physical space would be services such

as Twitter, which allow people to observe others’ tweets in

an aggregate form (which is quite natural in physical space,

but requires filtering and counting mechanisms in electronic

space), endorse them by adopting hashtags, improve upon

the message, and so on. In general, for a crowd (or mass) -

conceived communication to happen, there is a need for a

mechanism to be in place to coordinate the generation of the

message by soliciting messages, receiving them, and then

aggregating them into a group message. The solicitation

lays out the rules to be followed for selection of the

potential senders, receiving their messages, and aggregating

them. For example, imagine a multi-stage communication

with the first solicitation being to invite nominations for

topics to have the message on, followed by a vote to select

the topic, and followed by a solicitation of messages,

followed by a final vote to agree on an aggregate message.

The communication could be one-time, periodic, or

continual. There may or may not be a time-out for

responding to the solicitation. All these aspects would be

layed out in the original solicitation.

Our approach is to construct key coordination

mechanisms required for this class of services requiring

multi-origin communication, and then allow service

designers to provide service specific code -- which uses the

available mechanisms -- in order to launch their services. A

new service could then be implemented by a service

provider by simply providing the code for service-specific

tasks, such as for solicitation of messages from mobile

devices, the needed abstraction of sensor feeds on the

devices, and aggregation of the messages to create a group

message. These communications could be set up as

continual real-time updates for a web or mobile app based

service, serving user requests as they arise, or they could be

launched each time a request comes in. The pieces of code

provided by the service provider would simply be plugged

into the common coordination mechanisms to create a new

service.

The rest of paper is organized as follows: Section 2

presents related work. Section 3 describes how multi-origin

communication can support crowd-sourced services. Section

4 presents our preliminary design of design of a
middleware for crowd-sourced services using multi-
origin communication. Section 5 uses two very different

type of examples to illustrate how services could be

implemented using this approach. Finally, Section 6

concludes the paper.

2. RELATED WORK
There have been a number of projects -- both in

academia and industry -- involving crowd-sourced services.

The term crowd-sourced can refer to two types of services:

participatory sensing services and crowdsensing services.

Participatory sensing involves explicit participation by the

human being in possession of the mobile device, whereas

crowdsensing relies on sensor feeds automatically flowing

from devices to servers.

We first present some representative examples of both

these types of crowd-sourced services, and then discuss

some existing frameworks for enabling such services.

2.1 Crowd-Sourced Services
Some of the best examples of participatory sensing

services can be found in services aimed at assisting

automobile drivers.

Waze (United States Patents, US Patent No. 8,271,057,

2009) is one of the largest community-orientated mobile

travel applications with users volunteering information

about their driving experience in real time, by reporting on

congestions, delays, and gasoline prices. These reports then

become the basis for information displayed on other drivers’

maps (on their mobile devices), to help them make routing

decisions.

Similarly, TrafficPulse (Li, Liang, Lee, & Byon, 2012)

combines sensor data from mobile devices with real-time

traveler reports from frequent travelers, and then offers this

information to other drivers in an aggregated form.

Crowd-sourcing has also been found to be useful in

efforts to coordinate rescue efforts following major disasters,

such as the Haitian earthquake in 2010 (Zook, Graham,

Shelton, & Gorman, 2010). Information aggregated from

social media (e.g., blogs, emails, tweets, and facebook status

updates) was used to overcome challenges created by both

the inadequacy of maps and the change in landscape

because of the devastation.

CrowdHelp (Besaleva & Weaver, 2013) uses

smartphones to collect direct feedback from mobile users

about their medical condition, in combination with data

coming from sensors in smartphones. This information is

used to enable swift response to emergencies. For example,

when CrowdHelp is used for emergency reporting, mobile

users submit information relevant to an event (such as the

number of injured people and their state) to a central server.

This information is collected and sent to the nearest health

care facility capable of treating the injured.

Among crowdsensing services, the real-time traffic

information displayed on Google Maps is arguably the most

widely used one. The service relies on location data

voluntarily made available by users of Google’s services,

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

45
http://hipore.com/ijsc

which is then aggregated and then visualized on Google’s

Maps to show traffic flow. Since Google’s acquisition of

Waze in 2012, Waze’s participatory sensing service has now

been combined with Google’s crowdsensing service for

providing real-time traffic flow information.

Crowdsensing has also been used by Uga et al. (Uga,

Nagaosa, & Kawashima, 2012) in an earthquake warning

system, which uses data from accelerometers present in

many modern mobile devices to detect seismic vibrations.

Devices send reports of likely seismic activity to a server

which then aggregates the reports received to send out

warnings.

2.2 Mobile Crowd-Sourced Frameworks
Efforts to build frameworks for crowd-sourced

applications have focused on narrow application areas,

making it difficult to utilize them for a wider class of

services. These frameworks are particularly lacking in

reusable coordination mechanisms of the type we are

proposing.

Medusa (Ra, Liu, La-Porta, & Govindan, 2012) is a

programming framework for crowd-sourced applications. A

task (such as video documentation or citizen journalism) is

launched by a requester, and workers} are solicited through

Amazon’s Mechanical Turk (AMT) service. These workers

-- volunteering smartphone users -- then provide raw or

processed data to be used as part of a social or technical

experiment. Typically, an XML-based programming

language, MedScript, is used to specify the required task as

a series of several stages, from the initial recruitment of

volunteer workers, to the workers’ (say, for a video

documentation task) recording videos on their smartphones,

summarizing them, and then sending them back. The stages

can involve actions selectable from a library of executables,

which are downloaded to mobile devices from a cloud

server. Medusa’s limitation in terms of wider applicability

to a large class of crowd-source services lies in the limited

types of activities that the tasks can involve, and the limited

types of interactions that the parties can have.

AnonySense (Cornelius, et al., 2008) is another

framework for collecting and processing sensor data, which

pays particular attention to privacy concerns. AnonySense

allows a requester to launch one of a selected group of

applications with their parameters. The application then

distributes sensing tasks across anonymous participating

mobile devices (referred to as carriers), and finally

aggregates the reports received from the carriers.

CDAS (Liu, et al., 2012) is an example of participatory

crowd-sensing frameworks. In CDAS, the participants are

part of a distributed crowd-sensed system. The CDAS

system enables deployment of various crowd-sensing

applications that require human involvement for simple

verification tasks to deliver high accuracy services. Similar

to CDAS, MOSDEN (Jayaraman, Perera, Georgakopoulos,

& Zaslavsky, 2013) is a collaborative mobile sensing

framework that operates on smartphones to capture and

share sensed data between multiple distributed applications

and users.

Mobile Edge Capture and Analysis middleware for

social sensing applications (MECA) (Ye, Ganti, Dimaghani,

Grueneberg, & Calo, 2012) is a middleware for efficient

data collection from mobile device. It uses a multi-layer

architecture to take advantage of similarities in the data

required for different applications to lower the demand on

the devices on which data is being collected. Although

MECA takes an interesting approach in addressing the

problem of growing demand of vertically integrated

applications competing for limited resources on mobile

devices, its focus is limited to a narrower class of

applications, and does not address wider programmability

challenges as we attempt to do in this work.

Figure 1. Multi-Origin Communication

3. SUPPORTING MULTI-ORIGIN

COMMUNICATION
As illustrated by Figure 1, multi-origin communication

involves a number of autonomous senders sending messages

which are somehow aggregated into a group message.

However, as previously explained in the introduction, this

type of communication requires an advance setup for

coordinating the communication.

We describe the implementation of this coordination

setup as an Actor (Agha, 1986) program. Actors are

autonomous concurrently executing primitive agents (i.e.,

active objects) which communicate using asynchronous

messages.2 We represent the different parties involved in a

2
 Actors are emerging as the model of choice for very large-

scale applications such as Facebook chat service and Twitter

have been written in actor languages (Agha G. , 2014).

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

46
http://hipore.com/ijsc

communication using actors, and define complex

communications in terms of asynchronous actor messages.

The requester of a multi-origin communication makes a

function call in order to launch the communication. The call

passes parameters specifying the potential senders -- the

constituency -- to be invited to participate in the

communication, as well as the way in which the messages

would be aggregated. As illustrated in Figure 2, invocation

of the function results in the creation of a new coordinator

actor capable of coordinating the communication, which is

next told to invite the constituency to participate. The

coordinator then sends invitations to the members of the

constituency (the senders) to send their message; when

applicable, it also sends them parameters advising on how to

construct their messages (such as by tapping into a set of

sensors, or soliciting input from the user), how often to send

them (once or periodically, how frequently), etc.

Figure 2. Service Setup

We assume that each sender is an actor with a method to

receive these requests, and the capability to create the types

of messages. Given that there are a relatively small number

of sensors on mobile devices, the parameters could simply

be specifying which sensors to be tapping into, with what

frequency, and what periods to be averaging the feeds over,

etc. However, coordinators for some services may be more

interested in hearing about higher-level events -- such as a

restaurant client sitting down at the table, finishing eating,

paying the bill -- which would require more significant local

processing to generate than simply receiving sensor feeds.

This could be supported in various ways: by migrating an

actor with the required behavior to the sender, by sending

the code as a parameter to create an actor locally, or simply

by frequently updating the sender-side application to include

the functionality needed by every type of request.

As the senders send their messages, the messages are

aggregated by the coordinator according to its own behavior,

to generate group messages on behalf of the senders.

We specifically introduce two types of such setups. The

first -- one-off multi-origin communication -- is to solicit a

group message from a number of senders with a termination

condition and a timeout. This would be the type of

communication used to serve one-time requests, such as to

hold a census or an election, or to satisfy a one-off request

to recommend a restaurant with a short waiting time. The

second -- continual multi-origin communication -- is to

solicit a continual feed of group messages from a number of

senders. This would be useful for a service provided over

the web or through a mobile application where site visitors

or application users seek up-to-date information (say) on

restaurant waiting times in a neighborhood. For some

services, such as the one for restaurant recommendations,

the choice of one or the other setup would depend on the

frequency of requests, the number of potential senders of

messages, etc. For instance, it would not be useful to be

maintaining up-to-date information about all restaurants

when there are very few requests for recommendations;

however, it would be wasteful to solicit one-off

communications for frequent requests.

3.1 One-Off Multi-Origin Communication

In a one-off multi-origin communication, the coordinator

actor expects at most one message from any sender. It

collects messages until either a sufficient number of

messages has been received (as can be tested using a

termination function), or a timeout has been reached; it then

proceeds to aggregate the messages, and sends the aggregate

to the requester on behalf of the senders. An example of a

multi-origin communication with timeout would be an

electronic voting service, where the coordinator expects no

more than one vote from each voter and there is a deadline

by which all votes must be in.

Figure 3 illustrates the execution of a one-off multi-

origin communication using an actor event diagram (Agha,

1986). In the figure, sender1 through sendern are the

prospective senders. There is a clock actor to which the

requester sends a request to notify the coordinator when the

timeout has been reached. We assume that the clock is local

to the coordinator and has a way of notifying in a timely

manner. The requester initiates the communication by

calling the function oneOffCommSetup(coordClass,

constit, termCond, timeout), where coordClass is

the desired behavior of the coordinator, constit is a list of

senders, termCond is a function to test the termination

condition indicating receipt of a sufficient number of

messages, and timeout is a time when the coordinator

would stop accepting messages from the senders.

Once the coordinator is created, it sends announcements

to all senders, and begins collecting messages. The

coordinator expects to receive the maximum of one message

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

47
http://hipore.com/ijsc

from each sender. After the timeout is reached, the

coordinator sends a message to the requester with an

aggregate of all responses.

The coordinator actor’s behavior can be defined by

extending the multicall selective blocking broadcast

operation defined in (Geng & Jamali, 2013) with support for

timeouts, or directly using the following three methods:

 Figure 3. One-Off Multi-Origin Communication

 announce(constit), used by the requester to instruct

the coordinator to solicit messages from members of the

constituency.

 sendMessage(msg), used by the senders to send their

messages to the coordinator.

 timeout(), used by the clock to tell the coordinator

that the timeout has been reached.

Figure 4. Pseudocode for oneOffCommSetup

A sender actor’s communication behavior is defined by

one method: receiveAnnouncement(serviceParams).

This is the method invoked when the solicitation is received

from the coordinator, and it carries out the computations

specified in serviceParams in order to create its message.

Figure 4 shows pseudocode for the oneOffCommSetup

function. The createCoordActor function creates a new

coordinator actor with the termination condition and

application-specific customization initialized in its behavior,

and returns the coordinator name. Once the coordinator has

been created, a message is sent to the coordinator to

broadcast an announcement to all senders. Another message

is sent to the clock actor instructing it to notify the

coordinator when the timeout is reached.

3.2 Continual Multi-OriginCommunication

void oneOffCommSetup(coordClass,constit,

termCond,timeout,custom) {

 coordinator = createCoordActor(coordClass,

 termCond,custom);

 coordinator <- announce(constit);

 clock <- timeoutSetup(coordinator,timeout);

}

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

48
http://hipore.com/ijsc

In a continual multi-origin communication, the

coordinator expects multiple messages from each sender

over time, and periodically aggregates them and sends

updates to the communication’s requester. When a new

message arrives, the coordinator checks whether it warrants

an update, or whether the interval for which it was to collect

messages has passed. In either case, it forwards an aggregate

of messages received since the beginning of the interval to

the requester. An example of continual communication

would be that of a restaurant recommendation service

available over the web, which attempts to offer up-to-day

information to site visitors. The service could also be

customized for individual visitors, based on their geographic

locations, preferences, etc.

Figure 5. Continual Multi-Origin Communication

Figure 5 illustrates the execution of a continual multi-

origin communication using an actor event diagram. sender1

through sendern now send multiple messages over time,

reporting local updates. Also, the clock actor periodically

(i.e., after every interval period of time) notifies the

coordinator of the passage of an interval, at which time the

coordinator computes a new aggregate.

A continual communication is initiated by the requester

by calling the function continualCommSetup

(coordClassconstit,updateCond,interval), where

coordClass is the desired behavior of the coordinator,

constit is the list of prospective senders, updateCond

specifies the condition in which the requester should be

immediately updated3, and interval specifies the intervals

at which the coordinator would be notified by the clock.

Once the coordinator has been created, it broadcasts an

announcement to all senders, and then waits to receive

messages. Senders either send updates periodically or when

3 This should also lead to resetting of the interval with the

clock; this is not shown in the event diagram to avoid

making it too crowded.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

49
http://hipore.com/ijsc

they observe an interesting event (such as a change in the

level of activity in a restaurant, for example).

A coordinator actor’s behavior is defined by the

following methods:

 announce(constit), used by the requester to instruct

the coordinator to solicit messages from members of the

constituency.

 sendMessage(msg), used by the senders to send

messages to the coordinator.

 interval(),used by the clock to inform the

coordinator of the passage of each interval.

A sender actor’s behavior is defined by one method:

receiveAnnouncement(serviceParams). This is the

method invoked when the solicitation is received from the

coordinator, and it carries out the computations specified in

serviceParams required for creating its messages.

Figure 6. Pseudocode for continualCommSetup

Figure 6 shows the pseudocode for function

continualCommSetup. The createCoordActor

function creates a new coordinator actor with an update

condition and application-specific customization initialized

in its behavior, and returns the coordinator name. Once the

coordinator has been created, a message is sent to the

coordinator4 to broadcast an announcement to all senders.

Another message is sent to the clock actor instructing it to

notify the coordinator every time the required interval has

passed.

4. CROWD-SOURCED SERVICE

MIDDLEWARE DESIGN
Our design of a crowd-sourced service (CSS)

middleware builds on the mechanism for multi-origin

communication described in the previous section. As

illustrated in Figure 7, the sensing crowd becomes the

constituency whose input is solicited. The service

continually aggregates the feeds arriving from the crowd to

create up-to-date custom views for various types of clients.

For example, if the service were for recommending

restaurants, one interface could be for prospective diners,

another for the restaurant managers making real-time

4 a ← m(p) means message m with parameters p is sent

asynchronously to actor a.

staffing plans, yet another could be for a vehicular routing

system interested in improving downtown traffic flow at

lunch time.

Figure 7. Crowd-Sourced Service

4.1 New Service Setup

Setting up of a new service can be requested by specifying

the service. This could be done by either instantiating

objects from a given class of services with parameter values,

or by providing actual code. On receiving the request, the

service platform uses the continualCommSetup() primitive

to first create a custom service coordinator and then invite

members of the identified constituency (i.e., the crowd) to

begin sending their feeds to the coordinator. The decision to

have the service platform (and not the service coordinator)

invite the constituency helps support dynamically evolving

crowds of relevance to a service, who could be identified

based on their geographical location or other locality

characteristics. The service coordinator periodically reports

the messages received from the crowd to the service

platform in aggregate form, to be then delivered to the

service’s clients through their custom interfaces.

4.1.1 Contribution Requests
Each member of the crowd is represented by an actor

executing on some device. The usual way of specifying the

behavior of an actor is by defining specific methods which

can be invoked on the actor as a result of incoming

asynchronous messages. Each contributor actor has a

method to receive parameterized requests from coordinators,

and the capability to construct the requested types of

messages. Given that there are a relatively small number of

sensors on the types of mobile devices of interest, the

parameters could simply be specifying which sensors to be

tapping into, with what frequency, and what periods to be

averaging the feeds over, etc. However, coordinators for

some services may be more interested in hearing about

higher-level events -- such as a restaurant client sitting down

at the table, finishing eating, paying the bill -- which would

require some amount of local processing in order to generate

rather than simply forwarding raw sensor feeds. This could

be supported in various ways: by migrating a custom-

void continualCommSetup(coordClass,constit,

 updateCond,interval,custom) {

 coordinator = createCoordActor(coordClass,

 updateCond,custom);

 coordinator <- announce (constit);

 clock <- intervalSetup(coordinator,

 interval);

}

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

50
http://hipore.com/ijsc

designed actor with the required behavior to the sender, by

sending the code as a parameter to create an actor locally on

the contributor device, or simply by frequently updating a

contributor-side application to include the functionality

needed by every new type of request.

Figure 8. Service Platform and APIs

4.1.2 CSS Platform APIs
Figure 8 illustrates the Crowd-Sourced Service (CSS)

platform and its two main APIs. The first -- the Service

Creation API -- is what a service designer uses to request

the launching of a new crowd-sourced service. Service

specifications are passed as parameters to specify the

constituency to be invited to participate in the

communication, and the aggregation method to be used to

aggregate the incoming feeds. The second -- the Service

Request API -- is used by clients interested in using an

existing service; each service may have multiple client

interfaces delivering specific views of the service.

Figure 9. System Architecture

4.2 Distributed Runtime System

Figure 9 illustrates how the distributed run-time system

for the middleware is organized with parts executing on the

service platform, on devices of members of the constituency,

as well as client devices. We discuss these three parts

separately in the rest of this section.

4.2.1 Service Platform Side
The service designer uses the service creation API to

create and launch a new crowd-sourced service. A set of

parameters stating service specifications is passed through

the API. These specifications identify the contributors to be

invited to participate in the service, the aggregation method

to be used, as well as a description of the feeds solicited

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

51
http://hipore.com/ijsc

from the contributors in terms of specific events of interest,

such as arrival at a restaurant, being seated at the table, etc.

To launch a new service, the service manager (see server

in Figure 9) creates a new service coordinator to coordinate

the communication between the contributors and the CSS

platform, which is capable of coordinating the

communication between the contributors and the CSS

platform. Next, it sends invitations to the contributors to

send their events -- when one is detected -- to the

coordinator. It also sends them parameters advising on how

to detect events, construct their messages, and how often to

send them (once or periodically, how frequently, etc.).

Contributor events received by a service coordinator are

handled by its event aggregator, which in turn reports the

events in aggregate form to the CSS platform’s event

receptionist. The aggregated events are then passed on to

the service manager, which processes them to update the

service’s state, which is forwarded to the service interface

manager to deliver appropriate views requested by clients

through custom interfaces.

Figure 10. Contributor Side

4.2.2 Contributor Side
To launch a service, the platform’s service manager

sends invitations to contributors to participate in the service.

It also sends them parameters advising on how to detect

events and construct their messages (i.e., sensing

parameters). Event detection is carried out by dedicated

event detection actors, who generate event feeds using

relevant sensor feeds, which are then sent to the service

coordinator.

As shown in Figure 10, an optimizing sampling

scheduler schedules the sampling of each sensor based on

the sensing requirements received from the service

coordinator for each service being served at the time. The

scheduler attempts to optimize the sampling rate of each

sensor exploiting opportunities for different services to

share sensor feeds when possible. This could also be helped

by setting granularity restrictions on the sampling rates for

improving performance and conserving power.

The sensor listener is responsible for sampling sensor

data according to the sampling rate received from the

sampling scheduler. However, because sensor feeds are for

all services, there is a filter to extract the required sub-feeds

to be sent to the event detection actors. Each event

detection actor uses all the sensor feeds it requires in order

to detect events and generate its event feed to the service

coordinator.

4.2.3 Client Side
A service can have various types of clients subscribed to

different views of the service’s state, each provided by a

custom interface. When a client requests subscription to a

particular type of view, the request manager inside the client

app constructs a custom view subscription request. This

request is passed on to the service view interface, which is

transmitted through the service request API of the CSS

platform (see Figure 9). The platform adds the client to a list

of subscribers to that view of the service, and begins

sending it all updates.

Figure 11. Design of Crowd-Sourced Services

5. USAGE EXAMPLES
Figure 11 illustrates how a crowd-sourced service could

be designed using the multi-origin communication

primitives we have described in the previous section. The

service would solicit and receive one-off or continual multi-

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

52
http://hipore.com/ijsc

origin communications from a target constituency. These

communications would enable the service to track the state

of an activity, and various types of users would be able to

request relevant views of the state through custom interfaces.

This section presents two case studies to illustrate the

use of the two multi-origin communication primitives we

have designed. Both examples use the continual multi-

origin communication primitive; one-off versions of the

examples can be easily adapted from these solutions using

the one-off communication primitive.

5.1 A Restaurant Recommendation Service

Figure 13 shows the type of restaurant recommendation

service introduced earlier in the paper), where devices of

people visiting restaurants in a neighborhood automatically

send real-time updates about the service they are receiving

to a service provider, who then aggregates this information

for people searching for restaurants. We assume that

information required for generating these real-time updates

can be gathered automatically by a personal device (such as

a smartphone) by tapping into various sensors to determine

when some arrives at a restaurant, when they are waiting to

be seated, when they sit down, when they are served, when

they finish eating, and when they leave. The information

could be coarser or finer grained depending on the device,

usage habits, quality of behavior detecting software, etc. An

aggregation of these updates could then be aggregated by

the service provider to rank restaurants according to criteria

such as the amount of wait time before being seated, the

length of time taken dining (shorter or longer, as preferred),

the total amount of time that the user could expect to travel

to the restaurant, dine, and be back. The ranking could also

include information about the number of people being sent

to various restaurants by the service itself.

 Figure 12. Methods Defining Behavior of Restaurant

Service Actor

This service can be launched by creating and launching

of a service actor, which in turn makes a number of calls to

set up continual multi-origin messages, one for each

restaurant, each geographical area, etc., depending on the

degree of distribution required or desired. The start

method in Figure 12 shows how this could be done if a

separate coordination were needed for each restaurant. The

restaurants of interest are chosen, assigned unique IDs, and

placed in a restIDList. Then for each restID, mobile

devices in and near the restaurant are identified, say by

tracking automatic check-ins. Finally, a call is made to

set up a multi-origin communication primitive for each

restaurant, with the nearby devices identified as the

constituency.

Figure 13. Restaurant Recommendation Service

Additional parameters specify the condition indicating

significant change in the restaurant state warranting an

update to the server, and null to indicate that there is no set

interval at which updates must be made. Each of these calls

creates a local restaurant coordinator which invites event

updates from current diners’ devices. The devices in turn

have applications installed to tap into sensor feeds to

recognize significant events, such as arriving at the

restaurant, being seated at a table. If there are a number of

similar services that the device’s owner is interested in, then

each would interpret the sensor feeds for the purposes of

that service. As an event gets recognized by a device, it

sends a message to its restaurant coordinator, invoking the

coordinator’s sendMessage method (Figure 14).

sendMessage records the event in eventList and checks

to see whether the event represents a significant change in

the restaurant’s state, and if so, sends an update message to

the restaurant service -- known to the coordinator by its

actor name serviceName -- to report the change.

Invocation of update in the service updates the global state

with the new information. In a real system, it would also

make sense for both the restaurant coordinators as well as

the global service to use aging functions to lower the

relevance of obsolete information.

 void start() {

 * choose restaurants to track; assign them IDs;
 place them in restIDList with coordinates *

 for each restID in restIDList {

 * collect names of devices in or near restaurant ID *
 continualCommSetup(restCoordClass,

 deviceNameList,sigChange,null,restID);

 }

 }

 rankedRestList getView(location,rankParams){

 return rank(filter(restIDList, location),

 rankParams);

 }

 void update(stateUpdate, restID) {

 * update global state with restID’s new state *
 }

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

53
http://hipore.com/ijsc

A user searching for restaurants would call the getView

method on the server with location and rankParams as

parameters, where location specifies the user’s

geographical coordinates, and rankParams specify the

metrics by which to rank the restaurant (such as by the wait

time). The server filters the restaurant list for relevance

according to the user’s location, and then creates a ranking

using rankParams to be returned to the client.

Figure 14. Methods Defining Behavior of a Regional

Coordinator Actor

5.2 Twitter-like Messaging Service

Twitter serves a number of purposes, which include

transmission of personal, organizational and news updates,

networking, coordination of collective action, and sharing or

propagation of opinions. Increasingly, it has also served as a

source of information for journalists, opinion makers,

politicians, etc. to acquire a sense of public sentiment. There

are a handful of specific message formatting devices

(particularly hashtags) which are created and subsequently

adopted by contributors to indicate relationship with

existing messages and conversations, and which enable

some degree of analysis of sentiment. Here we discuss how

to use the mechanisms we have presented in this paper to

implement a service which allows users to both contribute

their opinions, and obtain aggregate information helpful in

assessing contributor sentiment.

Figure 15. Twitter-like Messaging Service

Figure 15 shows how the service can be set up. The

service is launched by the creation and launching of the

messaging service actor, whose behavior is to receive

requests for creation of new discussions with identified

constituencies. These requests are received in the form of

createDiscussion message sends as shown in Figure 16.

When the service receives this message, it assigns a new

ID -- discussionID -- to identify the discussion topic by,

and calls the continual multi-origin communication setup

primitive continualCommSetup with parameters

specifying the discussion coordinator’s behavior

(discCoordClass), the constit, null for the update

condition, updateInterval specifying the length of the

intervals after which the service should receive updates

from the coordinator, and finally discussionID to tell the

coordinator its discussion topic ID. This call creates a

dedicated discussion coordinator for that discussion, which

in turn announces the discussion to the constituency. Once

invited, members of the constituency are free to send

messages to the discussion coordinator in the form of an

asynchronous message invoking its sendMessage method

(shown in Figure 17).

Figure 16. Methods Defining Behavior of Messaging

Service Actor

sendMessage takes as parameter a list voteList of

(message, weight) pairs, where message is either a new

message drafted by the sender, or an existing message

previously sent to the service (a ranked list of which can be

obtained by calling the findMessages method of the

messaging server), and weight indicates the proportional

void sendMessage(deviceName,event,restID)

{

 * record received event in eventList *
 if (sigChange(eventList))

 serviceName <- update(aggr(eventList),

 restID);

}

void createDiscussion(discussionTitle,

 constit) {

 * assign unique ID to discussionTitle *
 continualCommSetup(discCoordClass,constit

 ,null,updateInterval,discussionID);

}

void getView(userName,userID,discussionID,

 viewType,viewParams) {

 authenticate(userName,userID);

 userName <- view(filter(state,discussionID

 ,userID,viewType,viewParams));

 * add username’s record to the subscriber list *
}

rankedMessageList findMessages(userName,

 discussionID,keywords) {

 * create ranked list of existing messages relevant to
 keywords *
 return * ranked message list *;

}

void update(votesUpdate,discussionID) {

 * update state with votesUpdate *
 for each entry e in subscriber list {

 e.userName <- view(filter(state,

 e.discussionID,e.userID,

 e.viewType,e.viewParams));

 }

}

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

54
http://hipore.com/ijsc

weight that the sender intends that message to have of their

vote. Each sender has exactly one vote for any discussion,

which they are free to distribute between various messages

under their discussion.

The service can have various types of users, subscribed

to different views of the discussions’ states provided by

custom interfaces (see Figure 15). When a user requests

subscription to a particular type of view -- viewType --

after authentication, it is sent the view (by having a view

message sent to it), and is also added to a subscriber list to

be sent future updates. The types of view may include a

view for an analyst interested in tracking trends, or even a

view for a message sender interested in staying up to date

about a discussion to possibly revise their votes.

On receiving a sendMessage message, the discussion

coordinator first updates recentUpdates to reflect the new

messages received, and then checks to see if it is time to

aggregate received messages and report back to the service.

If it is time,5 it aggregates the updates and reports them to

the server using an update message, which invokes the

corresponding method in the server. The server’s update

method updates the state of the discussion, and then for

every entry in the list of service subscribers, sends them the

view that they are subscribed to.

Figure 17. Method Defining Behavior of a Discussion

Coordinator Actor

The service maintains the current state for all

discussions. In practice, the service itself could be

distributed into a number of actors, each handing any

number of discussions.

There are some noteworthy features of this approach.

First, message contributors are authenticated, and the voting

is fair in that each contributor has the same one vote in any

discussion, which they may divide among the multiple

messages they support. Second, the constituency for each

discussion is explicitly specified. This would allow this

approach to be used for holding credible votes. Third, the

approach naturally aggregates by allowing contributors to

vote for existing messages rather than having them send a

fresh message each time.

5 If messages are infrequent, a clock could be asked by the

service to interrupt the coordinator at the end of each

interval.

6. CONCLUSIONS
With the growing ubiquity of sensors – be it as part of

special purpose sensor networks or as sensors on people’s

mobile devices – it is more possible than ever to offer

innovative services based on what may be happening

virtually anywhere that there are either people or critical

infrastructure (with connected embedded sensors). People

can be directed to the restaurant with the most available

tables or the hospital with the shortest wait in the

Emergency. People can also more actively participate in

decision making such as in a mid-21st century fine-grained

democracy. However, the barriers to offering such services

continue to be prohibitive for most. Not only must these

services be implemented, they would inevitably compete for

resources on people’s devices.

We have argued in this paper that many crowd-sourced

services, including prominent social media services (if we

consider their role of helping evolve collective messages),

require similar communication mechanisms. We focus on

one such mechanism -- multi-origin communication --

which allows a number of autonomous participants to

contribute messages which can then be aggregated to create

group messages on behalf of all. We introduce an approach

to supporting crowd-sourced services using multi-origin

communication, and present our design of an Actor-based

middleware for crowd-sourced services as a platform for

launching such services. Finally, we present two case

studies to illustrate the use of the two multi-origin

communication primitives we have designed. Both

examples use the continual multi-origin communication

primitive; one-off versions of the examples can be easily

adapted from these solutions using the one-off

communication primitive.

A prototype is currently in the process of being

implemented over an Actor implementation also ported to

the Android operating system to support crowdsensing. We

are also looking at the patterns of communication in

wireless sensor networks – which appear to broadly fit the

criteria of multi-origin communication – to see if network

routing approaches developed for WSN would also help

optimize communication in our context.

In on-going work, we are simultaneously examining the

possibility of further generalizing the class of services

which can be supported with this approach, as well as

simplifying the programmability of the most common types

of services. We want to apply our approach for fine-grained

resource coordination to refining the sensor sampling

scheduler, and more generally to manage the resource

demands that a larger number of services may place on

resource-constrained mobile devices. Finally, we plan to

experimentally evaluate the scalability of the approach.

7. ACKNOWLEDGMENT

void sendMessage(userName,userID,voteList) {

 authenticate(userName,userID);

 * record received votes in recentUpdates *
 if(currentTime >= lastAggregate + interval)

 {

 serviceName <- update(aggr(recentUpdates),

 discussionID);

 lastAggregate += interval;

 }

}

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

55
http://hipore.com/ijsc

Support from the Natural Science and Engineering

Council (Canada), the Canadian Foundation for Innovation,

and the Government of Saskatchewan is gratefully

acknowledged.

8. REFERENCES
AbdelMoamen, A., & Jamali, N. (2014). Coordinating Crowd-Sourced

Services. Proceedings of the Third IEEE International Conference on

Mobile Services. Alaska, USA: IEEE.

Agha, G. (1986). Actors: A Model of Concurrent Computation in

Distributed Systems (1st edition). Cambridge, MA, USA: MIT Press.

Agha, G. (2014). Actors Programming for the Mobile Cloud. Proceedings

of the 13th IEEE International Symposium on Parallel and Distributed

Computing (ISPDC), (pp. 3-9). Porquerolles Island, France.

Besaleva, L., & Weaver, A. (2013). CrowdHelp: A crowdsourcing

application for improving disaster management. Proceedings of the 2012

IEEE Conference on Global Humanitarian Technology (pp. 185-190). San

Jose, California, USA: IEEE.

Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., &

Triandopoulos, N. (2008). Anonysense: Privacy-aware People-centric

Sensing. Proceedings of the 2008 ACM International Conference on

Mobile Systems, Applications, and Services (pp. 211-224). Breckenridge,

CO, USA: ACM.

Geng, H., & Jamali, N. (2013). Supporting Many-to-many Communication.

Proceedings of the 2013 ACM SIGPLAN Workshop on Programming

Based on Actors, Agents, and Decentralized Control (AGERE!@SPLASH)

(pp. 81- 86). Indianapolis, Indiana, USA: ACM.

Jayaraman, P., Perera, C., Georgakopoulos, D., & Zaslavsky, A. (2013).

Efficient opportunistic sensing using mobile collaborative platform

MOSDEN. Proceedings of the 2013 International Conference on

Collaborative Computing: Networking, Applications and Worksharing, (pp.

77-86). Austin, Texas, United States.

Levine, U., Shinar, A., Shabtai, E., & Shmuelevitz, Y. (2009). United

States Patents, US Patent No. 8,271,057.

Li, R.-Y., Liang, S., Lee, D.-W., & Byon, Y.-J. (2012). TrafficPulse: A

Mobile GISystem for Transportation. Proceedings of the 2012 ACM

SIGSPATIAL International Workshop on Mobile Geographic Information

Systems (pp. 9-16). Redondo Beach, California: ACM.

Liu, X., Lu, M., Ooi, C., Shen, Y., Wu, S., & Zhang, M. (2012, June).

CDAS: : A Crowdsourcing Data Analytics System. The Journal of the

VLDB Endowment (PVLDB), 5, 1040-1051.

Ra, M.-R., Liu, B., La-Porta, T., & Govindan, R. (2012). Medusa: A

Programming Framework for Crowd-sensing Applications. (pp. 337-350).

Low Wood Bay, Lake District, UK: ACM.

Uga, T., Nagaosa, T., & Kawashima, D. (2012). An emergency earthquake

warning system using mobile terminals with a built-in accelerometer.

Proceedings of the 2012 IEEE Conference on ITS Telecommunications,

(pp. 837-842). Taipei, Taiwan.

Ye, F., Ganti, R., Dimaghani, R., Grueneberg, K., & Calo, S. (2012).

MECA: Mobile Edge Capture and Analysis Middleware for Social Sensing

Applications. Proceedings of the 2012 International Conference

Companion on World Wide Web (pp. 699-702). Lyon, France: ACM.

Zook, M., Graham, M., Shelton, T., & Gorman, S. (2010). Volunteered

Geographic Information and Crowdsourcing Disaster Relief: A Case Study

of the Haitian Earthquake. World Medical and Health Policy, 2, 7-33.

Authors

Ahmed Abdel Moamen is currently a

third-year PhD candidate in the

Department of Computer Science at

University of Saskatchewan. He has

received his B.S. (2007) and M.S.

(2011) degrees in Computer Science

at Faculty of Computers and

Information, Cairo University, Egypt. His research interests

are in the general areas of Concurrency, Distributed Systems,

Mobile Computing and Crowd-sourcing.

Nadeem Jamali is an associate

professor in the Department of

Computer Science at the University

of Saskatchewan. He received a

Ph.D. from University of Illinois at

Urbana-Champaign in 2004. His

research interests lie in

coordination, control and communication problems in

parallel and distributed systems.

