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Abstract 
As personal mobile devices become gain popularity, not only is it possible receive a variety of services virtually 
anywhere, the sensors on the same devices can also actively contribute real-time day from their contexts to be used in 
services.  A busy professional could find a restaurant to go to for a quick lunch based on information available from 
smartphones of people already there having lunch, waiting to be seated, or even heading there.  Also imagine a mid-
21st century fine-grained democracy where citizens might authorize use of a police officer’s firearm – in real time – 
based on a live video feed of the scene.  Although the programming required for offering a new service of this sort can 
be significant if done from scratch, we argue that in many cases it does not. We identify core communication 
mechanisms which underly many crowd-sourced services, and present preliminary design of a middleware which 
implements them. Service designers may launch novel services over this middleware by simply plugging in small 
pieces of service specific code. 

This paper identifies the coordination mechanisms required for these crowd-sourced services as types of 
multi-origin communication. We present details of how these core mechanisms can be implemented using Actors, and 
introduce high-level programming constructs for launching a new service. In addition, we present our design of a 
middleware for crowd-sourced services using multi-origin communication. Finally, we use examples to illustrate the 
implementation of services. 
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__________________________________________________________________________________________________________________ 

1. INTRODUCTION 
As personal computational devices such as smart phones, 

Google glasses, etc., become ubiquitous, so do the sensors 

(and potentially actuators) on those devices.  Not only can 

people receive services virtually anywhere, there is a way 

for potential services to rely on real-time snapshot of every 

place that a device might be located. Consider a restaurant 

recommendation service which samples data collected about 

experiences of clients at a number of restaurants in a 

neighborhood and ranks them according to the service 

experience of the clients currently there. The source of the 

data could be sensor feeds on clients’ mobile devices, which 

could guess whether they are waiting in line, seated, 

enjoying their meals, paying or leaving. Consider, another  

service combining real-time routing information -- such as 

is collected for showing traffic information on Google Maps 

-- with wait times at hospital emergencies to recommend 

which one to go to when in need of urgent care. If we also 

consider user input explicitly or implicitly entered into the 

devices, another class of services can be offered, from real-

time polling, to instant censuses, and even voting in 

elections. The generation growing up in the world of Twitter 

and Facebook may find it quaint that democracies hold 

elections only once every few years.  Why not have much 

more frequent votes on much finer grained decisions 

effecting citizens every day?  It is entirely conceivable that 

in the not so distant future, a form of fine-grained 

democracy may emerge where citizens get to vote – in real 

time – on if and when a police officer’s firearm is enabled, 

based on a live video feed of the scene 

We are interested in an opportunity created by the 

similarity in the patterns of communication required for 

such services, which we refer to as multi-origin 

communication. Previously (Geng & Jamali, 2013) 

differentiated between single-origin and multi-origin types 

of multi-sender communication.1 The single-origin type of 

multi-sender communication is initiated by a single party 

which solicits interest from other parties to join together in 

sending a particular message.  An example of this would be 

a workplace petition.  Using email, the option usually 

available is for one person to be the recognizable active 

sender of the petition, with the remaining people passively 

listed in the “cc” field.  The alternative we are interested in 

is to allow all senders to be equally responsible for sending 

such a message, despite its single point of origin.  In multi-

origin (implicitly also multi-sender) communication, the 

expectation is that that there is no single party who must 

                                                             
1

We have previously referred to multi-sender 

communication as many-to-many communication; however, 

the emphasis was on the multiple senders, because there is 

sufficient existing research on multiple recipients.  For 

multi-origin multi-sender messages, we skip multi-sender 

because it is implicit.   
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take the lead.  In other words, multiple parties may 

autonomously launch messages which could then be 

aggregated in order to create a group message. 

It turns out that unlike single-origin multi-sender 

messages, multi-origin messages require a setup in advance. 

Consider a public square where a number of citizens 

spontaneously begin to gather to party or protest.  In this 

context, the physical space of the square serves as part of a 

setup which allows mutual observation, an opportunity to 

join in or leave, to endorse, reject or refine the collective 

message or experience over time. The closest electronic 

equivalent of such a physical space would be services such 

as Twitter, which allow people to observe others’ tweets in 

an aggregate form (which is quite natural in physical space, 

but requires filtering and counting mechanisms in electronic 

space), endorse them by adopting hashtags, improve upon 

the message, and so on.  In general, for a crowd (or mass) -

conceived communication to happen, there is a need for a 

mechanism to be in place to coordinate the generation of the 

message by soliciting messages, receiving them, and then 

aggregating them into a group message.  The solicitation 

lays out the rules to be followed for selection of the 

potential senders, receiving their messages, and aggregating 

them.  For example, imagine a multi-stage communication 

with the first solicitation being to invite nominations for 

topics to have the message on, followed by a vote to select 

the topic, and followed by a solicitation of messages, 

followed by a final vote to agree on an aggregate message.  

The communication could be one-time, periodic, or 

continual. There may or may not be a time-out for 

responding to the solicitation. All these aspects would be 

layed out in the original solicitation. 

Our approach is to construct key coordination 

mechanisms required for this class of services requiring 

multi-origin communication, and then allow service 

designers to provide service specific code -- which uses the 

available mechanisms -- in order to launch their services.  A 

new service could then be implemented by a service 

provider by simply providing the code for service-specific 

tasks, such as for solicitation of messages from mobile 

devices, the needed abstraction of sensor feeds on the 

devices, and aggregation of the messages to create a group 

message. These communications could be set up as 

continual real-time updates for a web or mobile app based 

service, serving user requests as they arise, or they could be 

launched each time a request comes in.  The pieces of code 

provided by the service provider would simply be plugged 

into the common coordination mechanisms to create a new 

service. 

The rest of paper is organized as follows: Section 2 

presents related work. Section 3 describes how multi-origin 

communication can support crowd-sourced services. Section 

4 presents our preliminary design of design of a 
middleware for crowd-sourced services using multi-
origin communication. Section 5 uses two very different 

type of examples to illustrate how services could be 

implemented using this approach. Finally, Section 6 

concludes the paper. 

2. RELATED WORK 
There have been a number of projects -- both in 

academia and industry -- involving crowd-sourced services.  

The term crowd-sourced can refer to two types of services: 

participatory sensing services and crowdsensing services.  

Participatory sensing involves explicit participation by the 

human being in possession of the mobile device, whereas 

crowdsensing relies on sensor feeds automatically flowing 

from devices to servers. 

We first present some representative examples of both 

these types of crowd-sourced services, and then discuss 

some existing frameworks for enabling such services. 

 

2.1 Crowd-Sourced Services 
Some of the best examples of participatory sensing 

services can be found in services aimed at assisting 

automobile drivers. 

Waze  (United States Patents, US Patent No. 8,271,057, 

2009) is one of the largest community-orientated mobile 

travel applications with users volunteering information 

about their driving experience in real time, by reporting on 

congestions, delays, and gasoline prices.  These reports then 

become the basis for information displayed on other drivers’ 

maps (on their mobile devices), to help them make routing 

decisions. 

Similarly, TrafficPulse (Li, Liang, Lee, & Byon, 2012) 

combines sensor data from mobile devices with real-time 

traveler reports from frequent travelers, and then offers this 

information to other drivers in an aggregated form. 

Crowd-sourcing has also been found to be useful in 

efforts to coordinate rescue efforts following major disasters, 

such as the Haitian earthquake in 2010 (Zook, Graham, 

Shelton, & Gorman, 2010). Information aggregated from 

social media (e.g., blogs, emails, tweets, and facebook status 

updates) was used to overcome challenges created by both 

the inadequacy of maps and the change in landscape 

because of the devastation. 

CrowdHelp (Besaleva & Weaver, 2013) uses 

smartphones to collect direct feedback from mobile users 

about their medical condition, in combination with data 

coming from sensors in smartphones. This information is 

used to enable swift response to emergencies. For example, 

when CrowdHelp is used for emergency reporting, mobile 

users submit information relevant to an event (such as the 

number of injured people and their state) to a central server. 

This information is collected and sent to the nearest health 

care facility capable of treating the injured. 

Among crowdsensing services, the real-time traffic 

information displayed on Google Maps is arguably the most 

widely used one.  The service relies on location data 

voluntarily made available by users of Google’s services, 
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which is then aggregated and then visualized on Google’s 

Maps to show traffic flow.   Since Google’s acquisition of 

Waze in 2012, Waze’s participatory sensing service has now 

been combined with Google’s crowdsensing service for 

providing real-time traffic flow information. 

Crowdsensing has also been used by Uga et al.  (Uga, 

Nagaosa, & Kawashima, 2012) in an earthquake warning 

system, which uses data from accelerometers present in 

many modern mobile devices to detect seismic vibrations.  

Devices send reports of likely seismic activity to a server 

which then aggregates the reports received to send out 

warnings. 

 

2.2 Mobile Crowd-Sourced Frameworks 
Efforts to build frameworks for crowd-sourced 

applications have focused on narrow application areas, 

making it difficult to utilize them for a wider class of 

services.  These frameworks are particularly lacking in 

reusable coordination mechanisms of the type we are 

proposing. 

Medusa (Ra, Liu, La-Porta, & Govindan, 2012) is a 

programming framework for crowd-sourced applications.  A 

task (such as video documentation or citizen journalism) is 

launched by a requester, and workers} are solicited through 

Amazon’s Mechanical Turk (AMT) service.  These workers 

-- volunteering smartphone users -- then provide raw or 

processed data to be used as part of a social or technical 

experiment. Typically, an XML-based programming 

language, MedScript, is used to specify the required task as 

a series of several stages, from the initial recruitment of 

volunteer workers, to the workers’ (say, for a video 

documentation task) recording videos on their smartphones, 

summarizing them, and then sending them back.  The stages 

can involve actions selectable from a library of executables, 

which are downloaded to mobile devices from a cloud 

server.  Medusa’s limitation in terms of wider applicability 

to a large class of crowd-source services lies in the limited 

types of activities that the tasks can involve, and the limited 

types of interactions that the parties can have. 

AnonySense (Cornelius, et al., 2008) is another 

framework for collecting and processing sensor data, which 

pays particular attention to privacy concerns. AnonySense 

allows a requester to launch one of a selected group of 

applications with their parameters.  The application then 

distributes sensing tasks across anonymous participating 

mobile devices (referred to as carriers), and finally 

aggregates the reports received from the carriers. 

CDAS (Liu, et al., 2012) is an example of participatory 

crowd-sensing frameworks. In CDAS, the participants are 

part of a distributed crowd-sensed system. The CDAS 

system enables deployment of various crowd-sensing 

applications that require human involvement for simple 

verification tasks to deliver high accuracy services. Similar 

to CDAS, MOSDEN (Jayaraman, Perera, Georgakopoulos, 

& Zaslavsky, 2013) is a collaborative mobile sensing 

framework that operates on smartphones to capture and 

share sensed data between multiple distributed applications 

and users. 

Mobile Edge Capture and Analysis middleware for 

social sensing applications (MECA) (Ye, Ganti, Dimaghani, 

Grueneberg, & Calo, 2012) is a middleware for efficient 

data collection from mobile device.  It uses a multi-layer 

architecture to take advantage of similarities in the data 

required for different applications to lower the demand on 

the devices on which data is being collected.  Although 

MECA takes an interesting approach in addressing the 

problem of growing demand of vertically integrated 

applications competing for limited resources on mobile 

devices, its focus is limited to a narrower class of 

applications, and does not address wider programmability 

challenges as we attempt to do in this work. 

Figure 1. Multi-Origin Communication 
 

3. SUPPORTING MULTI-ORIGIN 

COMMUNICATION 
As illustrated by Figure 1, multi-origin communication 

involves a number of autonomous senders sending messages 

which are somehow aggregated into a group message.  

However, as previously explained in the introduction, this 

type of communication requires an advance setup for 

coordinating the communication.  

 

 

We describe the implementation of this coordination 

setup as an Actor (Agha, 1986) program.  Actors are 

autonomous concurrently executing primitive agents (i.e., 

active objects) which communicate using asynchronous 

messages.2 We represent the different parties involved in a 

                                                             
2
 Actors are emerging as the model of choice for very large-

scale applications such as Facebook chat service and Twitter 

have been written in actor languages (Agha G. , 2014). 
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communication using actors, and define complex 

communications in terms of asynchronous actor messages.  

The requester of a multi-origin communication makes a 

function call in order to launch the communication.  The call 

passes parameters specifying the potential senders -- the 

constituency -- to be invited to participate in the 

communication, as well as the way in which the messages 

would be aggregated.  As illustrated in Figure 2, invocation 

of the function results in the creation of a new coordinator 

actor capable of coordinating the communication, which is 

next told to invite the constituency to participate.  The 

coordinator then sends invitations to the members of the 

constituency (the senders) to send their message; when 

applicable, it also sends them parameters advising on how to 

construct their messages (such as by tapping into a set of 

sensors, or soliciting input from the user), how often to send 

them (once or periodically, how frequently), etc.

Figure 2. Service Setup 

 

We assume that each sender is an actor with a method to 

receive these requests, and the capability to create the types 

of messages. Given that there are a relatively small number 

of sensors on mobile devices, the parameters could simply 

be specifying which sensors to be tapping into, with what 

frequency, and what periods to be averaging the feeds over, 

etc.  However, coordinators for some services may be more 

interested in hearing about higher-level events -- such as a 

restaurant client sitting down at the table, finishing eating, 

paying the bill -- which would require more significant local 

processing to generate than simply receiving sensor feeds.  

This could be supported in various ways: by migrating an 

actor with the required behavior to the sender, by sending 

the code as a parameter to create an actor locally, or simply 

by frequently updating the sender-side application to include 

the functionality needed by every type of request. 

As the senders send their messages, the messages are 

aggregated by the coordinator according to its own behavior, 

to generate group messages on behalf of the senders. 

We specifically introduce two types of such setups.  The 

first -- one-off multi-origin communication -- is to solicit a 

group message from a number of senders with a termination 

condition and a timeout. This would be the type of 

communication used to serve one-time requests, such as to 

hold a census or an election, or to satisfy a one-off request 

to recommend a restaurant with a short waiting time.  The 

second -- continual multi-origin communication -- is to 

solicit a continual feed of group messages from a number of 

senders.  This would be useful for a service provided over 

the web or through a mobile application where site visitors 

or application users seek up-to-date information (say) on 

restaurant waiting times in a neighborhood. For some 

services, such as the one for restaurant recommendations, 

the choice of one or the other setup would depend on the 

frequency of requests, the number of potential senders of 

messages, etc.  For instance, it would not be useful to be 

maintaining up-to-date information about all restaurants 

when there are very few requests for recommendations; 

however, it would be wasteful to solicit one-off 

communications for frequent requests. 

3.1 One-Off Multi-Origin Communication 

In a one-off multi-origin communication, the coordinator 

actor expects at most one message from any sender. It 

collects messages until either a sufficient number of 

messages has been received (as can be tested using a 

termination function), or a timeout has been reached; it then 

proceeds to aggregate the messages, and sends the aggregate 

to the requester on behalf of the senders.  An example of a 

multi-origin communication with timeout would be an 

electronic voting service, where the coordinator expects no 

more than one vote from each voter and there is a deadline 

by which all votes must be in. 

Figure 3 illustrates the execution of a one-off multi-

origin communication using an actor event diagram (Agha, 

1986). In the figure, sender1 through sendern are the 

prospective senders.  There is a clock actor to which the 

requester sends a request to notify the coordinator when the 

timeout has been reached.  We assume that the clock is local 

to the coordinator and has a way of notifying in a timely 

manner. The requester initiates the communication by 

calling the function oneOffCommSetup(coordClass, 

constit, termCond, timeout), where coordClass is 

the desired behavior of the coordinator, constit is a list of 

senders, termCond is a function to test the termination 

condition indicating receipt of a sufficient number of 

messages, and timeout is a time when the coordinator 

would stop accepting messages from the senders. 

Once the coordinator is created, it sends announcements 

to all senders, and begins collecting messages. The 

coordinator expects to receive the maximum of one message 
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from each sender.  After the timeout is reached, the 

coordinator sends a message to the requester with an 

aggregate of all responses. 

The coordinator actor’s behavior can be defined by 

extending the multicall selective blocking broadcast 

operation defined in (Geng & Jamali, 2013) with support for 

timeouts, or directly using the following three methods:

 Figure 3. One-Off Multi-Origin Communication 

 

 announce(constit), used by the requester to instruct 

the coordinator to solicit messages from members of the 

constituency. 

 sendMessage(msg), used by the senders to send their 

messages to the coordinator. 

 timeout(), used by the clock to tell the coordinator 

that the timeout has been reached. 

Figure 4. Pseudocode for oneOffCommSetup 

 

A sender actor’s communication behavior is defined by 

one method: receiveAnnouncement(serviceParams).  

This is the method invoked when the solicitation is received 

from the coordinator, and it carries out the computations 

specified in serviceParams in order to create its message. 

Figure 4 shows pseudocode for the oneOffCommSetup 

function.  The createCoordActor function creates a new 

coordinator actor with the termination condition and 

application-specific customization initialized in its behavior, 

and returns the coordinator name. Once the coordinator has 

been created, a message is sent to the coordinator to 

broadcast an announcement to all senders.  Another message 

is sent to the clock actor instructing it to notify the 

coordinator when the timeout is reached. 

 

3.2 Continual Multi-OriginCommunication 

void oneOffCommSetup(coordClass,constit, 

termCond,timeout,custom) { 

 coordinator = createCoordActor(coordClass, 

               termCond,custom); 

 coordinator <- announce(constit); 

 clock <- timeoutSetup(coordinator,timeout); 

} 
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In a continual multi-origin communication, the 

coordinator expects multiple messages from each sender 

over time, and periodically aggregates them and sends 

updates to the communication’s requester.  When a new 

message arrives, the coordinator checks whether it warrants 

an update, or whether the interval for which it was to collect 

messages has passed. In either case, it forwards an aggregate 

of messages received since the beginning of the interval to 

the requester. An example of continual communication 

would be that of a restaurant recommendation service 

available over the web, which attempts to offer up-to-day 

information to site visitors. The service could also be 

customized for individual visitors, based on their geographic 

locations, preferences, etc.

Figure 5. Continual Multi-Origin Communication 

 

Figure 5 illustrates the execution of a continual multi-

origin communication using an actor event diagram. sender1 

through sendern now send multiple messages over time, 

reporting local updates.  Also, the clock actor periodically 

(i.e., after every interval period of time) notifies the 

coordinator of the passage of an interval, at which time the 

coordinator computes a new aggregate. 

A continual communication is initiated by the requester 

by calling the function continualCommSetup 

(coordClassconstit,updateCond,interval), where 

coordClass is the desired behavior of the coordinator, 

constit is the list of prospective senders, updateCond 

specifies the condition in which the requester should be 

immediately updated3, and interval specifies the intervals 

at which the coordinator would be notified by the clock. 

Once the coordinator has been created, it broadcasts an 

announcement to all senders, and then waits to receive 

messages.  Senders either send updates periodically or when 

                                                             
3 This should also lead to resetting of the interval with the 

clock; this is not shown in the event diagram to avoid 

making it too crowded. 
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they observe an interesting event (such as a change in the 

level of activity in a restaurant, for example). 

A coordinator actor’s behavior is defined by the 

following methods: 

 announce(constit), used by the requester to instruct 

the coordinator to solicit messages from members of the 

constituency. 

 sendMessage(msg), used by the senders to send 

messages to the coordinator. 

 interval(),used by the clock to inform the 

coordinator of the passage of each interval. 

A sender actor’s behavior is defined by one method: 

receiveAnnouncement(serviceParams). This is the 

method invoked when the solicitation is received from the 

coordinator, and it carries out the computations specified in 

serviceParams required for creating its messages. 

 

Figure 6. Pseudocode for continualCommSetup 

 

Figure 6 shows the pseudocode for function 

continualCommSetup.  The createCoordActor 

function creates a new coordinator actor with an update 

condition and application-specific customization initialized 

in its behavior, and returns the coordinator name. Once the 

coordinator has been created, a message is sent to the 

coordinator4 to broadcast an announcement to all senders.  

Another message is sent to the clock actor instructing it to 

notify the coordinator every time the required interval has 

passed. 

4. CROWD-SOURCED SERVICE 

MIDDLEWARE DESIGN 
Our design of a crowd-sourced service (CSS) 

middleware builds on the mechanism for multi-origin 

communication described in the previous section.  As 

illustrated in Figure 7, the sensing crowd becomes the 

constituency whose input is solicited.  The service 

continually aggregates the feeds arriving from the crowd to 

create up-to-date custom views for various types of clients.  

For example, if the service were for recommending 

restaurants, one interface could be for prospective diners, 

another for the restaurant managers making real-time 

                                                             
4 a ← m(p) means message m with parameters p is sent 

asynchronously to actor a. 

staffing plans, yet another could be for a vehicular routing 

system interested in improving downtown traffic flow at 

lunch time.  

Figure 7. Crowd-Sourced Service 

 

4.1 New Service Setup 

Setting up of a new service can be requested by specifying 

the service.  This could be done by either instantiating 

objects from a given class of services with parameter values, 

or by providing actual code.  On receiving the request, the 

service platform uses the continualCommSetup() primitive 

to first create a custom service coordinator and then invite 

members of the identified constituency (i.e., the crowd) to 

begin sending their feeds to the coordinator.  The decision to 

have the service platform (and not the service coordinator) 

invite the constituency helps support dynamically evolving 

crowds of relevance to a service, who could be identified 

based on their geographical location or other locality 

characteristics.   The service coordinator periodically reports 

the messages received from the crowd to the service 

platform in aggregate form, to be then delivered to the 

service’s clients through their custom interfaces. 

 

4.1.1 Contribution Requests 
Each member of the crowd is represented by an actor 

executing on some device.  The usual way of specifying the 

behavior of an actor is by defining specific methods which 

can be invoked on the actor as a result of incoming 

asynchronous messages.  Each contributor actor has a 

method to receive parameterized requests from coordinators, 

and the capability to construct the requested types of 

messages.  Given that there are a relatively small number of 

sensors on the types of mobile devices of interest, the 

parameters could simply be specifying which sensors to be 

tapping into, with what frequency, and what periods to be 

averaging the feeds over, etc.  However, coordinators for 

some services may be more interested in hearing about 

higher-level events -- such as a restaurant client sitting down 

at the table, finishing eating, paying the bill -- which would 

require some amount of local processing in order to generate 

rather than simply forwarding raw sensor feeds.  This could 

be supported in various ways: by migrating a custom-

void continualCommSetup(coordClass,constit, 

              updateCond,interval,custom) { 

 coordinator = createCoordActor(coordClass, 

               updateCond,custom); 

 coordinator <- announce (constit); 

 clock <- intervalSetup(coordinator,  

          interval); 

} 
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designed actor with the required behavior to the sender, by 

sending the code as a parameter to create an actor locally on 

the contributor device, or simply by frequently updating a 

contributor-side application to include the functionality 

needed by every new type of request. 

Figure 8. Service Platform and APIs 

 

4.1.2 CSS Platform APIs 
Figure 8 illustrates the Crowd-Sourced Service (CSS) 

platform and its two main APIs. The first -- the Service 

Creation API -- is what a service designer uses to request 

the launching of a new crowd-sourced service.  Service 

specifications are passed as parameters to specify the 

constituency to be invited to participate in the 

communication, and the aggregation method to be used to 

aggregate the incoming feeds. The second -- the Service 

Request API -- is used by clients interested in using an 

existing service; each service may have multiple client 

interfaces delivering specific views of the service.

Figure 9. System Architecture 

 

4.2 Distributed Runtime System 

Figure 9 illustrates how the distributed run-time system 

for the middleware is organized with parts executing on the 

service platform, on devices of members of the constituency, 

as well as client devices. We discuss these three parts 

separately in the rest of this section. 

 

4.2.1 Service Platform Side 
The service designer uses the service creation API to 

create and launch a new crowd-sourced service. A set of 

parameters stating service specifications is passed through 

the API.  These specifications identify the contributors to be 

invited to participate in the service, the aggregation method 

to be used, as well as a description of the feeds solicited 
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from the contributors in terms of specific events of interest, 

such as arrival at a restaurant, being seated at the table, etc. 

To launch a new service, the service manager (see server 

in Figure 9) creates a new service coordinator to coordinate 

the communication between the contributors and the CSS 

platform, which is capable of coordinating the 

communication between the contributors and the CSS 

platform.  Next, it sends invitations to the contributors to 

send their events -- when one is detected -- to the 

coordinator. It also sends them parameters advising on how 

to detect events, construct their messages, and how often to 

send them (once or periodically, how frequently, etc.). 

Contributor events received by a service coordinator are 

handled by its event aggregator, which in turn reports the 

events in aggregate form to the CSS platform’s event 

receptionist.  The aggregated events are then passed on to 

the service manager, which processes them to update the 

service’s state, which is forwarded to the service interface 

manager to deliver appropriate views requested by clients 

through custom interfaces. 

Figure 10. Contributor Side 

 

4.2.2 Contributor Side 
To launch a service, the platform’s service manager 

sends invitations to contributors to participate in the service. 

It also sends them parameters advising on how to detect 

events and construct their messages (i.e., sensing 

parameters).  Event detection is carried out by dedicated 

event detection actors, who generate event feeds using 

relevant sensor feeds, which are then sent to the service 

coordinator. 

As shown in Figure 10, an optimizing sampling 

scheduler schedules the sampling of each sensor based on 

the sensing requirements received from the service 

coordinator for each service being served at the time.  The 

scheduler attempts to optimize the sampling rate of each 

sensor exploiting opportunities for different services to 

share sensor feeds when possible.  This could also be helped 

by setting granularity restrictions on the sampling rates for 

improving performance and conserving power. 

The sensor listener is responsible for sampling sensor 

data according to the sampling rate received from the 

sampling scheduler.  However, because sensor feeds are for 

all services, there is a filter to extract the required sub-feeds 

to be sent to the event detection actors.  Each event 

detection actor uses all the sensor feeds it requires in order 

to detect events and generate its event feed to the service 

coordinator. 

4.2.3 Client Side 
A service can have various types of clients subscribed to 

different views of the service’s state, each provided by a 

custom interface.  When a client requests subscription to a 

particular type of view, the request manager inside the client 

app constructs a custom view subscription request. This 

request is passed on to the service view interface, which is 

transmitted through the service request API of the CSS 

platform (see Figure 9). The platform adds the client to a list 

of subscribers to that view of the service, and begins 

sending it all updates. 

Figure 11. Design of Crowd-Sourced Services 

5. USAGE EXAMPLES 
Figure 11 illustrates how a crowd-sourced service could 

be designed using the multi-origin communication 

primitives we have described in the previous section.  The 

service would solicit and receive one-off or continual multi-
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origin communications from a target constituency.  These 

communications would enable the service to track the state 

of an activity, and various types of users would be able to 

request relevant views of the state through custom interfaces. 

This section presents two case studies to illustrate the 

use of the two multi-origin communication primitives we 

have designed.  Both examples use the continual multi-

origin communication primitive; one-off versions of the 

examples can be easily adapted from these solutions using 

the one-off communication primitive. 

 

5.1 A Restaurant Recommendation Service 

Figure 13 shows the type of restaurant recommendation 

service introduced earlier in the paper), where devices of 

people visiting restaurants in a neighborhood automatically 

send real-time updates about the service they are receiving 

to a service provider, who then aggregates this information 

for people searching for restaurants.  We assume that 

information required for generating these real-time updates 

can be gathered automatically by a personal device (such as 

a smartphone) by tapping into various sensors to determine 

when some arrives at a restaurant, when they are waiting to 

be seated, when they sit down, when they are served, when 

they finish eating, and when they leave.  The information 

could be coarser or finer grained depending on the device, 

usage habits, quality of behavior detecting software, etc.  An 

aggregation of these updates could then be aggregated by 

the service provider to rank restaurants according to criteria 

such as the amount of wait time before being seated, the 

length of time taken dining (shorter or longer, as preferred), 

the total amount of time that the user could expect to travel 

to the restaurant, dine, and be back.  The ranking could also 

include information about the number of people being sent 

to various restaurants by the service itself. 

 Figure 12. Methods Defining Behavior of Restaurant 

Service Actor 

 

This service can be launched by creating and launching 

of a service actor, which in turn makes a number of calls to 

set up continual multi-origin messages, one for each 

restaurant, each geographical area, etc., depending on the 

degree of distribution required or desired. The start 

method in Figure 12 shows how this could be done if a 

separate coordination were needed for each restaurant. The 

restaurants of interest are chosen, assigned unique IDs, and 

placed in a restIDList. Then for each restID, mobile 

devices in and near the restaurant are identified, say by 

tracking automatic check-ins.  Finally, a call is made to 

set up a multi-origin communication primitive for each 

restaurant, with the nearby devices identified as the 

constituency.   

Figure 13. Restaurant Recommendation Service 

 

Additional parameters specify the condition indicating 

significant change in the restaurant state warranting an 

update to the server, and null to indicate that there is no set 

interval at which updates must be made. Each of these calls 

creates a local restaurant coordinator which invites event 

updates from current diners’ devices.  The devices in turn 

have applications installed to tap into sensor feeds to 

recognize significant events, such as arriving at the 

restaurant, being seated at a table.  If there are a number of 

similar services that the device’s owner is interested in, then 

each would interpret the sensor feeds for the purposes of 

that service.  As an event gets recognized by a device, it 

sends a message to its restaurant coordinator, invoking the 

coordinator’s sendMessage method (Figure 14). 

sendMessage records the event in eventList and checks 

to see whether the event represents a significant change in 

the restaurant’s state, and if so, sends an update message to 

the restaurant service -- known to the coordinator by its 

actor name serviceName -- to report the change.  

Invocation of update in the service updates the global state 

with the new information.  In a real system, it would also 

make sense for both the restaurant coordinators as well as 

the global service to use aging functions to lower the 

relevance of obsolete information. 

 void start() { 

 

        * choose restaurants to track; assign them IDs;  
        place them in restIDList with coordinates * 
 

   for each restID in restIDList { 

     * collect names of devices in or near restaurant ID * 
     continualCommSetup(restCoordClass, 

       deviceNameList,sigChange,null,restID); 

   } 

 } 

 

 rankedRestList getView(location,rankParams){ 

   return rank(filter(restIDList, location), 

                                rankParams); 

 } 

 

 void update(stateUpdate, restID) { 

         * update global state with restID’s new state * 
 } 
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A user searching for restaurants would call the getView 

method on the server with location and rankParams as 

parameters, where location specifies the user’s 

geographical coordinates, and rankParams specify the 

metrics by which to rank the restaurant (such as by the wait 

time).  The server filters the restaurant list for relevance 

according to the user’s location, and then creates a ranking 

using rankParams to be returned to the client. 

Figure 14. Methods Defining Behavior of a Regional 

Coordinator Actor 

 

5.2 Twitter-like Messaging Service 

Twitter serves a number of purposes, which include 

transmission of personal, organizational and news updates, 

networking, coordination of collective action, and sharing or 

propagation of opinions. Increasingly, it has also served as a 

source of information for journalists, opinion makers, 

politicians, etc. to acquire a sense of public sentiment. There 

are a handful of specific message formatting devices 

(particularly hashtags) which are created and subsequently 

adopted by contributors to indicate relationship with 

existing messages and conversations, and which enable 

some degree of analysis of sentiment.  Here we discuss how 

to use the mechanisms we have presented in this paper to 

implement a service which allows users to both contribute 

their opinions, and obtain aggregate information helpful in 

assessing contributor sentiment. 

 

Figure 15. Twitter-like Messaging Service 

 

Figure 15 shows how the service can be set up.  The 

service is launched by the creation and launching of the 

messaging service actor, whose behavior is to receive 

requests for creation of new discussions with identified 

constituencies.  These requests are received in the form of 

createDiscussion message sends as shown in Figure 16. 

When the service receives this message, it assigns a new 

ID -- discussionID  -- to identify the discussion topic by, 

and calls the continual multi-origin communication setup 

primitive continualCommSetup with parameters 

specifying the discussion coordinator’s behavior 

(discCoordClass), the constit, null for the update 

condition, updateInterval specifying the length of the 

intervals after which the service should receive updates 

from the coordinator, and finally discussionID to tell the 

coordinator its discussion topic ID.  This call creates a 

dedicated discussion coordinator for that discussion, which 

in turn announces the discussion to the constituency.  Once 

invited, members of the constituency are free to send 

messages to the discussion coordinator in the form of an 

asynchronous message invoking its sendMessage method 

(shown in Figure 17). 

Figure 16. Methods Defining Behavior of Messaging 

Service Actor 
 

sendMessage takes as parameter a list voteList of 

(message, weight) pairs, where message is either a new 

message drafted by the sender, or an existing message 

previously sent to the service (a ranked list of which can be 

obtained by calling the findMessages method of the 

messaging server), and weight indicates the proportional 

void sendMessage(deviceName,event,restID) 

{ 

     * record received event in eventList * 
  if (sigChange(eventList)) 

    serviceName <- update(aggr(eventList), 

                                  restID); 

} 

void createDiscussion(discussionTitle,        

                            constit) { 

     * assign unique ID to discussionTitle * 
  continualCommSetup(discCoordClass,constit   

        ,null,updateInterval,discussionID); 

} 

 

void getView(userName,userID,discussionID, 

                    viewType,viewParams) { 

  authenticate(userName,userID); 

  userName <- view(filter(state,discussionID    

              ,userID,viewType,viewParams)); 

     * add username’s record to the subscriber list * 
} 

 

rankedMessageList findMessages(userName,    

                discussionID,keywords) { 

     * create ranked list of existing messages relevant to    
      keywords * 
  return * ranked message list *; 

} 

 

void update(votesUpdate,discussionID) { 

     * update state with votesUpdate * 
  for each entry e in subscriber list { 

     e.userName <- view(filter(state, 

     e.discussionID,e.userID, 

     e.viewType,e.viewParams)); 

  } 

} 
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weight that the sender intends that message to have of their 

vote.  Each sender has exactly one vote for any discussion, 

which they are free to distribute between various messages 

under their discussion. 

The service can have various types of users, subscribed 

to different views of the discussions’ states provided by 

custom interfaces (see Figure 15).  When a user requests 

subscription to a particular type of view -- viewType -- 

after authentication, it is sent the view (by having a view 

message sent to it), and is also added to a subscriber list to 

be sent future updates.   The types of view may include a 

view for an analyst interested in tracking trends, or even a 

view for a message sender interested in staying up to date 

about a discussion to possibly revise their votes. 

On receiving a sendMessage message, the discussion 

coordinator first updates recentUpdates to reflect the new 

messages received, and then checks to see if it is time to 

aggregate received messages and report back to the service.  

If it is time,5 it aggregates the updates and reports them to 

the server using an update message, which invokes the 

corresponding method in the server.  The server’s update 

method updates the state of the discussion, and then for 

every entry in the list of service subscribers, sends them the 

view that they are subscribed to. 

 

Figure 17. Method Defining Behavior of a Discussion 

Coordinator Actor 

 

The service maintains the current state for all 

discussions.  In practice, the service itself could be 

distributed into a number of actors, each handing any 

number of discussions. 

There are some noteworthy features of this approach.  

First, message contributors are authenticated, and the voting 

is fair in that each contributor has the same one vote in any 

discussion, which they may divide among the multiple 

messages they support.  Second, the constituency for each 

discussion is explicitly specified.  This would allow this 

approach to be used for holding credible votes.  Third, the 

approach naturally aggregates by allowing contributors to 

vote for existing messages rather than having them send a 

fresh message each time. 

                                                             
5 If messages are infrequent, a clock could be asked by the 

service to interrupt the coordinator at the end of each 

interval. 

6. CONCLUSIONS 
With the growing ubiquity of sensors – be it as part of 

special purpose sensor networks or as sensors on people’s 

mobile devices – it is more possible than ever to offer 

innovative services based on what may be happening 

virtually anywhere that there are either people or critical 

infrastructure (with connected embedded sensors). People 

can be directed to the restaurant with the most available 

tables or the hospital with the shortest wait in the 

Emergency.  People can also more actively participate in 

decision making such as in a mid-21st century fine-grained 

democracy. However, the barriers to offering such services 

continue to be prohibitive for most.  Not only must these 

services be implemented, they would inevitably compete for 

resources on people’s devices. 

We have argued in this paper that many crowd-sourced 

services, including prominent social media services (if we 

consider their role of helping evolve collective messages), 

require similar communication mechanisms.  We focus on 

one such mechanism -- multi-origin communication -- 

which allows a number of autonomous participants to 

contribute messages which can then be aggregated to create 

group messages on behalf of all.  We introduce an approach 

to supporting crowd-sourced services using multi-origin 

communication, and present our design of an Actor-based 

middleware for crowd-sourced services as a platform for 

launching such services.  Finally, we present two case 

studies to illustrate the use of the two multi-origin 

communication primitives we have designed. Both 

examples use the continual multi-origin communication 

primitive; one-off versions of the examples can be easily 

adapted from these solutions using the one-off 

communication primitive. 

A prototype is currently in the process of being 

implemented over an Actor implementation also ported to 

the Android operating system to support crowdsensing. We 

are also looking at the patterns of communication in 

wireless sensor networks – which appear to broadly fit the 

criteria of multi-origin communication – to see if network 

routing approaches developed for WSN would also help 

optimize communication in our context. 

In on-going work, we are simultaneously examining the 

possibility of further generalizing the class of services 

which can be supported with this approach, as well as 

simplifying the programmability of the most common types 

of services.  We want to apply our approach for fine-grained 

resource coordination to refining the sensor sampling 

scheduler, and more generally to manage the resource 

demands that a larger number of services may place on 

resource-constrained mobile devices.  Finally, we plan to 

experimentally evaluate the scalability of the approach. 
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