
Coordinating Crowd-Sourced Services

Ahmed Abdel Moamen
Department of Computer Science

University of Saskatchewan
Saskatoon, SK, Canada

moamen@agents.usask.ca

Nadeem Jamali
Department of Computer Science

University of Saskatchewan
Saskatoon, SK, Canada

jamali@cs.usask.ca

Abstract—The growing ubiquity of smartphones and similar
personal connected computational devices, each with a number
of sensors, has created an opportunity for useful services
based on crowd-sourced data. A busy professional could find
a restaurant to go to for a quick lunch based on information
available from smartphones of people already there having
lunch, waiting to be seated, or even heading there; a govern-
ment could conduct a census in real-time, or “sense” public
opinion.

Although the programming required for offering a new
service of this sort can be significant if done from scratch,
these applications have something in common: they use a
similar pattern of coordinated communications between the
various parties. This creates an opportunity to offer a set of
coordination mechanisms as a platform to service designers,
into which they can simply plug in their service specific code
to offer a new service.

This paper identifies the coordination mechanisms required
for these crowd-sourced services as types of multi-origin com-
munication. We present details of how these core mechanisms
can be implemented using Actors, and introduce high-level
programming constructs for launching a new service. Finally,
we use examples to illustrate the implementation of services.

I. INTRODUCTION

With the growing ubiquity of personal computational
devices such as smart phones, Google glasses, etc., has
also come the ubiquity of sensors on these devices, as well
as the potential for triggering actions virtually anywhere.
This opens up an opportunity to offer a variety of services
which rely on the state of the context in which devices are
located, such as a person or group of people carrying the
devices, their geographical location, etc. Consider a restau-
rant recommendation service which samples data collected
about experiences of clients at a number of restaurants in
a neighborhood and ranks them according to the service
experience of the clients currently there. The source of
the data could be sensor feeds on clients’ mobile devices,
which could guess whether they are waiting in line, seated,
enjoying their meals, paying or leaving. As technologies
like NFC payments become popular, more of these activities
could be directly detected on the device rather than require
guessing. The services themselves could also be less mun-
dane. Consider, for example, a service combining real-time
routing information – such as is collected for showing traffic

information on Google Maps – with wait times at hospital
emergencies to recommend which one to go to when in need
of urgent care. If we also consider user input explicitly or
implicitly entered into the devices, another class of services
can be offered, from real-time polling, to instant censuses,
and even voting in elections. The generation growing up in
the world of Twitter and Facebook may find it quaint that
democracies hold elections only once every few years. Why
not have much more frequent votes on much finer grained
decisions effecting citizens every day?

We are interested in an opportunity created by the sim-
ilarity in the patterns of communication required for such
services, which we refer to as multi-origin communication.
In previous work [1], we have differentiated between single-
origin and multi-origin types of multi-sender communica-
tion.1 The single-origin type of multi-sender communication
is initiated by a single party which solicits interest from
other parties to join together in sending a particular message.
An example of this would be a workplace petition. Using
email, the option available is for one person to be the
recognizable active sender of the petition, with the remaining
people passively listed in the “cc” field. The alternative we
developed allows all senders to be equally responsible for
sending such a message, despite its single point of origin.
In multi-origin (implicitly also multi-sender) communica-
tion, the expectation is that that there is no single party
that must take the lead. In other words, multiple parties
may autonomously launch messages which could then be
aggregated in order to create a group message.

It turns out that unlike single-origin multi-sender mes-
sages, multi-origin messages require a setup in advance.
Consider a public square where a number of citizens
spontaneously begin to gather to party or protest. In this
context, the physical space of the square serves as part of
a setup which allows mutual observation, an opportunity to
join in or leave, to endorse, reject or refine the collective
message or experience over time. The closest electronic

1We have previously referred to multi-sender communication as many-to-
many communication; however, the emphasis was on the multiple senders,
because there is sufficient existing research on multiple recipients. For
multi-origin multi-sender messages, we skip multi-sender because it is
implicit.

equivalent of such a physical space would be services such
as Twitter, which allow people to observe others’ tweets in
an aggregate form (which is quite natural in physical space,
but requires filtering and counting mechanisms in electronic
space), endorse them by adopting hashtags, improve upon
the message, and so on. In general, for a crowd (or mass)
-conceived communication to happen, there is a need for
a mechanism to be in place to coordinate the generation
of the message by soliciting messages, receiving them, and
then aggregating them into a group message. The solicitation
lays out the rules to be followed for selection of the potential
senders, receiving their messages, and aggregating them. For
example, imagine a multi-stage communication with the first
solicitation being to invite nominations for topics to have the
message on, followed by a vote to select the topic, followed
by a solicitation of messages, followed by a final vote to
agree on an aggregate message. The communication could
be one-time, periodic, or continual. There may or may not
be a time-out for responding to the solicitation. All these
aspects would be layed out in the original solicitation.

Our approach is to construct key coordination mechanisms
required for this class of services requiring multi-origin
communication, and then allow service designers to provide
service specific code – which uses the available mechanisms
– in order to launch their services. A new service could then
be implemented by a service provider by simply providing
the code for service-specific tasks, such as for solicitation
of messages from mobile devices, the needed abstraction of
sensor feeds on the devices, and aggregation of the messages
to create a group message. These communications could be
set up as continual real-time updates for a web or mobile
app based service, serving user requests as they arise, or they
could be launched each time a request comes in. The pieces
of code provided by the service provider would simply be
plugged into the common coordination mechanisms to create
a new service.

The rest of paper is organized as follows: Section II
presents the related work. Section III describes how to sup-
port multi-origin communication in crowd-sourced services.
Section IV uses two examples to illustrate how services
could be implemented using this approach. Finally, Section
V concludes the paper.

II. RELATED WORK

There have been a number of projects – both in academia
and industry – involving crowd-sourced services. The term
crowd-sourced can refer to two types of services: partici-
patory sensing services and crowdsensing services. Partic-
ipatory sensing involves explicit participation by the hu-
man being in possession of the mobile device, whereas
crowdsensing relies on sensor feeds automatically flowing
from devices to servers. We first present some representative
examples of both these types of crowd-sourced services, and

then discuss some existing frameworks for enabling such
services.

A. Crowd-Sourced Services

Some of the best examples of participatory sensing ser-
vices can be found in services aimed at assisting auto-
mobile drivers. Waze [2] is one of the largest community
orientated mobile travel applications with users volunteering
information about their driving experience in real time, by
reporting on congestions, delays, and gasoline prices. These
reports then become the basis for information displayed
on other drivers’ maps (on their mobile devices), to help
them make routing decisions. Similarly, TrafficPulse [3]
combines sensor data from mobile devices with real-time
traveler reports from frequent travelers, and then offers this
information to other drivers in an aggregated form.

Crowd-sourcing has also been found to be useful in efforts
to coordinate rescue efforts following major disasters, such
as the Haitian earthquake in 2010 [4]. Information aggre-
gated from social media (e.g., blogs, emails, tweets, and
facebook status updates) was used to overcome challenges
created by both the inadequacy of maps and the change in
landscape because of the devastation.

CrowdHelp [5] uses smartphones to collect direct feed-
back from mobile users about their medical condition, in
combination with data coming from sensors in smartphones.
This information is used to enable swift response to emer-
gencies. For example, when CrowdHelp is used for emer-
gency reporting, mobile users submit information relevant
to an event (such as the number of injured people and their
state) to a central server. This information is collected and
sent to the nearest health care facility capable of treating the
injured.

Among crowdsensing services, the real-time traffic in-
formation displayed on Google Maps is arguably the most
widely used one. The service relies on location data volun-
tarily made available by users of Google’s services, which
is then aggregated and then visualized on Google’s Maps
to show traffic flow. Since Google’s acquisition of Waze
in 2012, Waze’s participatory sensing service has now been
combined with Google’s crowdsensing service for providing
real-time traffic flow information.

Crowdsensing has also been used by Uga et al. [6]
in an earthquake warning system, which uses data from
accelerometers present in many modern mobile devices to
detect seismic vibrations. Devices send reports of likely
seismic activity to a server which then aggregates the reports
received to send out warnings.

B. Mobile Crowd-Sourced Frameworks

Medusa [7] is a programming framework for crowd-
sourced applications. A task (such as video documentation or
citizen journalism) is launched by a requester, and workers
are solicited through Amazon’s Mechanical Turk (AMT)

service. These workers – volunteering smartphone users –
then provide raw or processed data to be used as part of a
social or technical experiment. A task specified in MedScript
– an XML-based programming language – typically speci-
fies a series of several stages, from the initial recruitment
of volunteer workers, to the workers’ (say, for a video
documentation task) recording videos on their smartphones,
summarizing them, and then sending them back. The stages
can involve actions selectable from a library of executables,
which are downloaded to mobile devices from a cloud server.

AnonySense [8] is another framework for collecting and
processing sensor data, which pays particular attention to
privacy concerns. AnonySense allows a requester to launch
one of a selected group of applications with their parameters.
The application then distributes sensing tasks across anony-
mous participating mobile devices (referred to as carriers),
and finally aggregates the reports received from the carriers.

III. SUPPORTING MULTI-ORIGIN COMMUNICATION

As illustrated by Figure 1, multi-origin communication
involves a number of autonomous senders sending messages
which are somehow aggregated into a group message. How-
ever, as previously explained in the introduction, this type of
communication requires an advance setup for coordinating
the communication.

n

coordinator

destination
aggr

a1

a

2
a

Figure 1. Multi-Origin Communication

We describe the implementation of this coordination setup
as an Actor [9] program. Actors are autonomous concur-
rently executing primitive agents (i.e., active objects) which
communicate using asynchronous messages.2 We represent
the different parties involved in a communication using
actors, and define complex communications in terms of
asynchronous actor messages.

The requester of a multi-origin communication makes a
function call in order to launch the communication. The
call passes parameters specifying the potential senders – the
constituency – to be invited to participate in the communi-
cation, as well as the way in which the messages would be
aggregated. Invocation of the function results in the creation
of a new coordinator actor capable of coordinating the
communication, which is next told to invite the constituency
to participate. The coordinator then sends invitations to the
members of the constituency (the senders) to send their

2Actors are emerging as the model of choice for large-scale messaging
systems, most recently being adopted by Facebook’s Messenger service.

message; when applicable, it also sends them parameters
advising on how to construct their messages (such as by
tapping into a set of sensors, or soliciting input from the
user), how often to send them (once or periodically, how
frequently), etc.

We assume that each sender is an actor with a method to
receive these requests, and the capability to create the types
of messages. Given that there are a relatively small number
of sensors on mobile devices, the parameters could simply
be specifying which sensors to be tapping into, with what
frequency, and what periods to be averaging the feeds over,
etc. However, coordinators for some services may be more
interested in hearing about higher-level events – such as a
restaurant client sitting down at the table, finishing eating,
paying the bill – which would require more significant local
processing to generate than simply receiving sensor feeds.
This could be supported in various ways: by migrating an
actor with the required behavior to the sender, by sending
the code as a parameter to create an actor locally, or simply
by frequently updating the sender-side application to include
the functionality needed by every type of request.

As the senders send their messages, the messages are
aggregated by the coordinator according to its own behavior,
to generate group messages on behalf of the senders.

We specifically introduce two types of such setups. The
first – one-off multi-origin communication – is to solicit a
group message from a number of senders with a termination
condition and a timeout. This would be the type of commu-
nication used to serve one-time requests, such as to hold
a census or an election, or to satisfy a one-off request to
recommend a restaurant with a short waiting time. The sec-
ond – continual multi-origin communication – is to solicit a
continual feed of group messages from a number of senders.
This would be useful for a service provided over the web
or through a mobile application where site visitors or appli-
cation users seek up-to-date information (say) on restaurant
waiting times in a neighborhood. For some services, such
as the one for restaurant recommendations, the choice of
one or the other setup would depend on the frequency
of requests, the number of potential senders of messages,
etc. For instance, it would not be useful to be maintaining
up-to-date information about all restaurants when there are
very few requests for recommendations; however, it would
be wasteful to solicit one-off communications for frequent
requests.

A. One-Off Multi-Origin Communication

In a one-off multi-origin communication, the coordinator
actor expects at most one message from any sender. It col-
lects messages until either a sufficient number of messages
has been received (as can be tested using a termination
function), or a timeout has been reached; it then proceeds
to aggregate the messages, and sends the aggregate to the
requester on behalf of the senders. An example of a multi-

timeout

senderrequester coordinator 1

event
cond

aggr

msg

no

no

no
yes

yes

yes

aggr

aggr

aggr

event

cond

cond

oneOffCommSetup

2
sendersender n clock

.

event
msg

msg

create
request invite

timeout

time out

Figure 2. One-Off Multi-Origin Communication

origin communication with timeout would be an electronic
voting service, where the coordinator expects no more than
one vote from each voter and there is a deadline by which
all votes must be in.

Figure 2 illustrates the execution of a one-off multi-
origin communication using an actor event diagram [9]. In
the figure, sender1 through sendern are the prospective
senders. There is a clock actor to which the requester sends a
request to notify the coordinator when the timeout has been
reached. We assume that the clock is local to the coordinator
and has a way of notifying in a timely manner. The requester
initiates the communication by calling the function
oneOffCommSetup(coordClass, constit,
termCond, timeout), where coordClass is the
desired behavior of the coordinator, constit is a list of
senders, termCond is a function to test the termination
condition indicating receipt of a sufficient number of
messages, and timeout is a time when the coordinator
would stop accepting messages from the senders.

Once the coordinator is created, it sends announcements to
all senders, and begins collecting messages. The coordinator
expects to receive the maximum of one message from each
sender. After the timeout is reached, the coordinator sends a
message to the requester with an aggregate of all responses.

The coordinator actor’s behavior can be defined by ex-
tending the multicall selective blocking broadcast operation
defined in [1] with support for timeouts, or directly using
the following three methods:
• announce(constit), used by the requester to instruct

the coordinator to solicit messages from members of the
constituency.

• sendMessage(msg), used by the senders to send their

void oneOffCommSetup(coordClass,constit,
termCond,timeout,custom) {

coordinator = createCoordActor(coordClass,
termCond,custom);

coordinator <- announce(constit);
clock <- timeoutSetup(coordinator,timeout);

}

Figure 3. Pseudocode for oneOffCommSetup

request

sender

msg

aggr

coordinator
1

event

event

interval

cond

cond
yes

yes
no

aggr

aggr no

msg
cond

no

aggr
yes

aggr

continualCommSetup

msg

2
requester sendersender . . . n clock

event

interval

.

interval

P1

P2

invite

create

Figure 4. Continual Multi-Origin Communication

messages to the coordinator.
• timeout(), used by the clock to tell the coordinator

that the timeout has been reached.
A sender actor’s communication behav-

ior is defined by one method: receive-
Announcement(serviceParams). This is the
method invoked when the solicitation is received from the
coordinator, and it carries out the computations specified in
serviceParams in order to create its message.

Figure 3 shows pseudocode for the oneOffCommSetup
function. The create-CoordActor function creates a
new coordinator actor with the termination condition and
application-specific customization initialized in its behavior,
and returns the coordinator name. Once the coordinator has
been created, a message is sent to the coordinator to broad-
cast an announcement to all senders. Another message is
sent to the clock actor instructing it to notify the coordinator
when the timeout is reached.

B. Continual Multi-Origin Communication

In a continual multi-origin communication, the coordina-
tor expects multiple messages from each sender over time,

and periodically aggregates them and sends updates to the
communication’s requester. When a new message arrives,
the coordinator checks whether it warrants an update, or
whether the interval for which it was to collect messages has
passed. In either case, it forwards an aggregate of messages
received since the beginning of the interval to the requester.
An example of continual communication would be that of a
restaurant recommendation service available over the web,
which attempts to offer up-to-day information to site visitors.
The service could also be customized for individual visitors,
based on their geographic locations, preferences, etc.

Figure 4 illustrates the execution of a continual multi-
origin communication using an actor event diagram.
sender1 through sendern now send multiple messages
over time, reporting local updates. Also, the clock actor
periodically (i.e., after every interval period of time)
notifies the coordinator of the passage of an interval, at
which time the coordinator computes a new aggregate.

A continual communication is initiated
by the requester by calling the function
continualCommSetup(coordClass,constit,up-
dateCond,interval), where coordClass is the
desired behavior of the coordinator, constit is the list of
prospective senders, updateCond specifies the condition
in which the requester should be immediately updated,3 and
interval specifies the intervals at which the coordinator
would be notified by the clock.

Once the coordinator has been created, it broadcasts an
announcement to all senders, and then waits to receive
messages. Senders either send updates periodically or when
they observe an interesting event (such as a change in the
level of activity in a restaurant, for example).

A coordinator actor’s behavior is defined by the following
methods:
• announce(constit), used by the requester to instruct

the coordinator to solicit messages from members of the
constituency.

• sendMessage(msg), used by the senders to to send
messages to the coordinator.

• interval(), used by the clock to inform the coordina-
tor of the passage of each interval.
A sender actor’s behavior is defined by one method:

receiveAnnouncement(serviceParams). This is
the method invoked when the solicitation is received from
the coordinator, and it carries out the computations specified
in service-Params required for creating its messages.

Figure 5 shows the pseudocode for function
continualCommSetup. The create-CoordActor
function creates a new coordinator actor with an update
condition and application-specific customization initialized
in its behavior, and returns the coordinator name. Once

3This should also lead to resetting of the interval with the clock; this is
not shown in the event diagram to avoid making it too crowded.

void continualCommSetup(coordClass,constit,
updateCond,interval,custom) {

coordinator = createCoordActor(coordClass,
updateCond,custom);

coordinator <- announce (constit);
clock <- intervalSetup(coordinator,interval);

}

Figure 5. Pseudocode for continualCommSetup

multi−origin comm
service

interface interface

users

interface

users
constituency

users

Figure 6. Design of Crowd-Sourced Services

the coordinator has been created, a message is sent to the
coordinator4 to broadcast an announcement to all senders.
Another message is sent to the clock actor instructing it to
notify the coordinator every time the required interval has
passed.

IV. USAGE EXAMPLES

Figure 6 illustrates how a crowd-sourced service could be
designed using the multi-origin communication primitives
we have described in the previous section. The service would

4a← m(p) means message m with parameters p is sent asynchronously
to actor a.

void start() {

* choose restaurants to track; assign them IDs;
place them in restIDList with coordinates *
for each restID in restIDList {

* collect names of devices in or near restaurant ID *
continualCommSetup(restCoordClass,

deviceNameList,sigChange,null,restID);
}

}

rankedRestList getView(location, rankParams) {
return rank(filter(restIDList, location),

rankParams);
}

void update(stateUpdate, restID) {

* update global state with restID’s new state *
}

Figure 7. Methods Defining Behavior of Restaurant Service Actor

solicit and receive one-off or continual multi-origin commu-
nications from a target constituency. These communications
would enable the service to track the state of an activity,
and various types of users would be able to request relevant
views of the state through custom interfaces.

This section presents two case studies to illustrate the
use of the two multi-origin communication primitives we
have designed. Both examples use the continual multi-origin
communication primitive; one-off versions of the examples
can be easily adapted from these solutions using the one-off
communication primitive.

service

coordinator

mobile devices mobile devices

coordinator

........

Restaurant 1 Restaurant n

requester

........

Figure 8. Restaurant Recommendation Service

A. A Restaurant Recommendation Service

Consider the type of restaurant recommendation service
introduced earlier in the paper (Figure 8), where devices of
people visiting restaurants in a neighborhood automatically
send real-time updates about the service they are receiving
to a service provider, who then aggregates this information
for people searching for restaurants. We assume that infor-
mation required for generating these real-time updates can
be gathered automatically by a personal device (such as a
smartphone) by tapping into various sensors to determine
when some arrives at a restaurant, when they are waiting to
be seated, when they sit down, when they are served, when
they finish eating, and when they leave. The information
could be coarser or finer grained depending on the device,
usage habits, quality of behavior detecting software, etc. An
aggregation of these updates could then be aggregated by
the service provider to rank restaurants according to criteria
such as the amount of wait time before being seated, the
length of time taken dining (shorter or longer, as preferred),
the total amount of time that the user could expect to travel
to the restaurant, dine, and be back. The ranking could also
include information about the number of people being sent
to various restaurants by the service itself.

This service can be launched by creating and launching
of a service actor, which in turn makes a number of calls
to set up continual multi-origin messages, one for each

void sendMessage(deviceName,event,restID) {

* record received event in eventList *
if (sigChange(eventList))

serviceName <- update(aggr(eventList),
restID);

}

Figure 9. Methods Defining Behavior of a Regional Coordinator Actor

restaurant, each geographical area, etc., depending on the
degree of distribution required or desired. The start
method in Figure 7 shows how this could be done if a
separate coordination were needed for each restaurant. The
restaurants of interest are chosen, assigned unique IDs, and
placed in a restIDList. Then for each restID, mobile
devices in and near the restaurant are identified, say by
tracking automatic check-ins. Finally, a call is made to set up
a multi-origin communication primitive for each restaurant,
with the nearby devices identified as the constituency. Addi-
tional parameters specify the condition indicating significant
change in the restaurant state warranting an update to the
server, and null to indicate that there is no set interval at
which updates must be made. Each of these calls creates a
local restaurant coordinator which invites event updates from
current diners’ devices. The devices in turn have applications
installed to tap into sensor feeds to recognize significant
events, such as arriving at the restaurant, being seated at
a table. If there are a number of similar services that the
device’s owner is interested in, then each would interpret the
sensor feeds for the purposes of that service. As an event
gets recognized by a device, it sends a message to its restau-
rant coordinator, invoking the coordinator’s sendMessage
method (Figure 9). sendMessage records the event in
eventList and checks to see whether the event represents
a significant change in the restaurant’s state, and if so, sends
an update message to the restaurant service – known to
the coordinator by its actor name serviceName – to report
the change. Invocation of update in the service updates the
global state with the new information. In a real system, it
would also make sense for both the restaurant coordinators
as well as the global service to use aging functions to lower
the relevance of obsolete information.

A user searching for restaurants would call the getView
method on the server with location and rankParams as
parameters, where location specifies the user’s geograph-
ical coordinates, and rankParams specify the metrics by
which to rank the restaurant (such as by the wait time).
The server filters the restaurant list for relevance according
to the user’s location, and then creates a ranking using
rankParams to be returned to the client.

B. Twitter-like Messaging Service

Twitter serves a number of purposes, which include
transmission of personal, organizational and news updates,

void createDiscussion(discussionTitle,constit) {

* assign unique ID to discussionTitle *
continualCommSetup(discCoordClass,constit,

null,updateInterval,discussionID);
}

void getView(userName,userID,discussionID,
viewType,viewParams) {

authenticate(userName,userID);
userName <- view(filter(state,discussionID,

userID,viewType,viewParams));

* add userName’s record to the subscriber list *
}

rankedMessageList findMessages(userName,
discussionID,keywords) {

* create ranked list of existing messages relevant to keywords *
return * ranked message list *;

}

void update(votesUpdate,discussionID) {

* update state with votesUpdate *
for each entry e in subscriber list {

e.userName <- view(filter(state,
e.discussionID,e.userID,
e.viewType,e.viewParams));

}
}

Figure 10. Methods Defining Behavior of Messaging Service Actor

void sendMessage(userName,userID,voteList) {
authenticate(userName,userID);

* record received votes in recentUpdates *
if (currentTime >= lastAggregate + interval) {

serviceName <- update(aggr(recentUpdates),
discussionID);

lastAggregate += interval;
}

}

Figure 11. Method Defining Behavior of a Discussion Coordinator Actor

networking, coordination of collective action, and sharing or
propagation of opinions. Increasingly, it has also served as a
source of information for journalists, opinion makers, politi-
cians, etc. to acquire a sense of public sentiment. There are a
handful of specific message formatting devices (particularly
hashtags) which are created and subsequently adopted by
contributors to indicate relationship with existing messages
and conversations, and which enable some degree of analysis
of sentiment. Here we discuss how to use the mechanisms
we have presented in this paper to implement a service
which allows users to both contribute their opinions, and
obtain aggregate information helpful in assessing contributor
sentiment.

Figure 12 shows how the service can be set up. The
service is launched by the creation and launching of the
messaging service actor, whose behavior is to receive re-
quests for creation of new discussions with identified con-

stituencies. These requests are received in the form of
createDiscussion message sends as shown in Fig-
ure 10. When the service receives this message, it assigns
a new ID – discussionID – to identify the discussion
topic by, and calls the continual multi-origin communi-
cation setup primitive continualCommSetup with pa-
rameters specifying the discussion coordinator’s behavior
(discCoordClass), the constit, null for the update
condition, updateInterval specifying the length of the
intervals after which the service should receive updates
from the coordinator, and finally discussionID to tell
the coordinator its discussion topic ID. This call creates a
dedicated discussion coordinator for that discussion, which
in turn announces the discussion to the constituency. Once
invited, members of the constituency are free to send
messages to the discussion coordinator in the form of an
asynchronous message invoking its sendMessage method
(shown in Figure 11).

ag
gr

coordinator coordinator

service

constituency constituency

create

requesters
createaggr

Figure 12. Twitter-like Messaging Service

sendMessage takes as parameter a list voteList of
(message, weight) pairs, where message is either a new
message drafted by the sender, or an existing message
previously sent to the service (a ranked list of which can
be obtained by calling the findMessages method of the
messaging server), and weight indicates the proportional
weight that the sender intends that message to have of their
vote. Each sender has exactly one vote for any discussion,
which they are free to distribute between various messages
under their discussion.

The service can have various types of users, subscribed
to different views of the discussions’ states provided by
custom interfaces (see Figure 12). When a user requests
subscription to a particular type of view – viewType –
after authentication, it is sent the view (by having a view
message sent to it), and is also added to a subscriber list
to be sent future updates. The types of view may include
a view for an analyst interested in tracking trends, or even
a view for a message sender interested in staying uptodate
about a discussion to possibly revise their votes.

On receiving a sendMessage message, the discussion
coordinator first updates recentUpdates to reflect the
new messages received, and then checks to see if it is time to
aggregate received messages and report back to the service.
If it is time,5 it aggregates the updates and reports them to
the server using an update message, which invokes the
corresponding method in the server. The server’s update
method updates the state of the discussion, and then for
every entry in the list of service subscribers, sends them the
view that they are subscribed to.

The service maintains the current state for all discussions.
In practice, the service itself could be distributed into a
number of actors, each handing any number of discussions.

There are some noteworthy features of this approach.
First, message contributors are authenticated, and the voting
is fair in that each contributor has the same one vote in
any discussion, which they may divide among the multiple
messages they support. Second, the constituency for each
discussion is explicitly specified. This would allow this
approach to be used for holding credible votes. Third, the
approach naturally aggregates by allowing contributors to
vote for existing messages rather than having them send a
fresh message each time.

V. CONCLUSIONS

With the growing ubiquity of sensors, it is more possible
than ever to offer services based on what the millions of
sensors on people’s mobile devices are sensing. However,
the barriers to offering such services are significant. Not only
must these services be implemented, they would inevitably
compete for resources on people’s devices. Our approach is
to design a platform with key coordination mechanisms im-
plemented to support a large class of services, and then allow
service designers to focus their attentions on service specific
code, which could simply be plugged into the platform.
Not only would this speed up development of innovative
services, the platform could also offer an opportunity to
optimize the delivery of needed sensor feeds to competing
services.

We view the pattern of communication required for such
services as that of a multi-origin communication. Although
there must still be one initiator – because such commu-
nications require an initial setup – the initiator’s role is
restricted to that of setting up a mechanism for coordinating
the communication. The difference between this and single-
origin multi-sender communication is subtle but important.
Once the communication has been set up, within the con-
straints of the communication’s design, the senders are free
to contribute messages at their own pace, and the messages
are aggregated to generate a collective message.

In this paper, we have described two simple but commonly
occurring patterns of multi-origin communication, and have

5If messages are infrequent, a clock could be asked by the service to
interrupt the coordinator at the end of each interval.

illustrated their use with examples. A prototype is currently
in the process of being implemented over an Actor imple-
mentation also ported to the Android operating system to
support crowdsensing. We are also looking at the patterns of
communication in wireless sensor networks – which appear
to broadly fit the criteria of multi-origin communication –
to see if network routing approaches developed for WSN
would also help optimize communication in our context.

REFERENCES

[1] H. Geng and N. Jamali, “Supporting many-to-many communi-
cation,” in Proceedings of the 2013 ACM SIGPLAN Workshop
on Programming Based on Actors, Agents, and Decentralized
Control (AGERE!@SPLASH). New York, NY, USA: ACM,
2013, pp. 81–86.

[2] U. Levine, A. Shinar, E. Shabtai, and Y. Shmuelevitz,
“Condition-based activation, shut-down and management of
applications of mobile devices,” United States Patents, US
8,271,057, 2009.

[3] R.-Y. Li, S. Liang, D.-W. Lee, and Y.-J. Byon, “Trafficpulse:
A mobile gisystem for transportation,” in Proceedings of the
2012 ACM SIGSPATIAL International Workshop on Mobile
Geographic Information Systems, ser. MobiGIS ’12. New
York, NY, USA: ACM, 2012, pp. 9–16.

[4] M. Zook, M. Graham, T. Shelton, and S. Gorman, “Volunteered
geographic information and crowdsourcing disaster relief: A
case study of the haitian earthquake,” World Medical and
Health Policy, vol. 2, no. 2, pp. 7–33, 2010.

[5] L. Besaleva and A. Weaver, “Crowdhelp: A crowdsourcing
application for improving disaster management,” in Proceed-
ings of the 2012 IEEE Conference on Global Humanitarian
Technology, ser. GHTC ’13, 2013, pp. 185–190.

[6] T. Uga, T. Nagaosa, and D. Kawashima, “An emergency
earthquake warning system using mobile terminals with a built-
in accelerometer,” in Proceedings of the 2012 IEEE Conference
on ITS Telecommunications.

[7] M.-R. Ra, B. Liu, T. La-Porta, and R. Govindan, “Medusa: A
programming framework for crowd-sensing applications,” in
Proceedings of the 2012 International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’12. New
York, NY, USA: ACM, 2012, pp. 337–350.

[8] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin,
and N. Triandopoulos, “Anonysense: Privacy-aware people-
centric sensing,” in Proceedings of the 2008 ACM International
Conference on Mobile Systems, Applications, and Services, ser.
MobiSys ’08. New York, NY, USA: ACM, 2008, pp. 211–
224.

[9] G. Agha, Actors: A Model of Concurrent Computation in
Distributed Systems. Cambridge, MA, USA: MIT Press, 1986.

	Introduction
	Related Work
	Crowd-Sourced Services
	Mobile Crowd-Sourced Frameworks

	Supporting Multi-Origin Communication
	One-Off Multi-Origin Communication
	Continual Multi-Origin Communication

	Usage Examples
	A Restaurant Recommendation Service
	Twitter-like Messaging Service

	Conclusions
	References

