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Abstract—Smartphones and a growing number of wear-
able devices are equipped with a variety of powerful
sensors. This has led to increased interest in developing
of applications across a wide variety of domains including
health-care, entertainment, environmental monitoring and
transportation, which use sensor feeds to offer services.
However, most of these applications require continuous
sensing, which places a heavy demand on the device’s
typically limited battery power. This problem is further
amplified as multiple applications attempt to monitor
multiple sensors simultaneously.

In this paper, we present ShareSens, our approach to
opportunistically merge independent sensing requirements
of applications. We achieve this using sensing schedulers
for sensors, which determine the lowest sensing rate which
would satisfy all requests, and then use custom filters
to send out only the needed data to each application.
Sensing requests made through the ShareSens API (which
we have implemented for Android) are forwarded to the
relevant schedulers which determine the optimum sensing
rates to satisfy all requests. The paper presents the design
and implementation of ShareSens, as well as results from
our experimental work on the power savings that can be
achieved by using it.

I. INTRODUCTION

Smartphones and the growing number of wearables
have a variety of different sensors built into them.
These sensors can be divided into three main cat-
egories: motion sensors (e.g., accelerometer, gravity,
gyroscope, GPS, and rotation vector), position sensors
(e.g., orientation, geomagnetic field, and proximity),
and environment sensors (e.g., light, pressure, humidity
and temperature). Sensors have different configuration
requirements, which may include various parameters or
settings that need to be specified, such as sampling rate,
trigger conditions, identifiers, and calibration.

Sensors place different levels of power demand on
a device. For example, GPS and orientation sensors
are significantly more power-expensive than accelerom-
eters. However, a continuous sensing workload – which
requires sensors to be sampled for a period of time – can
quickly drain the battery of a mobile device [1]. Such
workloads are required for a variety of independent ap-

plications, such as those focused on personal health and
fitness, but their impact on power consumption would
be most pronounced in the context of contributing data
to a significant number of crowd-sourced services [2].
One widely used method to reduce the energy consumed
by continuous sensing is to decrease the sampling rate,
the number of raw samples the sensors generate per
unit time [3]. Although reducing the sampling rate can
extend battery life, it can also lower sampling accuracy
to a level that is less than ideal. We aim to (opportunisti-
cally) optimize the power consumption of sensors while
meeting user-specified accuracy requirements.

Consider a scenario where two continuous sensing
apps are running simultaneously on the same mobile
device, requiring periodic samples from the a sensor, but
at different sampling rates. The first is a body activity
detection app, which needs accelerometer samples at the
rate of 10Hz, while the other is a background service for
location-detection, which needs accelerometer samples
at the rate of 20Hz. Even though the 20Hz stream
obviously contains a 10Hz, existing sensor APIs on
mobile platforms would set up two separate sampling
requests, amounting to a cumulative sampling of the
sensor at 30Hz.

Our approach is to exploit the opportunity created
by the overlap in requirements of sampling requests to
optimize sensor use of power. We introduce ShareSens,
an Android API for accessing sensor feeds, which
enables sharing of overlapping feeds between applica-
tions. An optimizing sampling scheduler schedules the
sampling of sensors based on the sensing requirements
received from apps running concurrently. The scheduler
opportunistically optimizes the effective sampling rate
of each sensor, exploiting opportunities for different
apps to share sensor samples when possible.

The rest of paper is organized as follows: Section II
presents the related work. Section III and IV present the
design and implementation of ShareSens respectively.
Section V presents our experimental results showing
power efficiency of the approach. Finally, Section VI
concludes the paper.



II. RELATED WORK

In this paper, we are interested in the effect of
continuous mobile sensing on the power consumption
of smartphones and wearables. We first present some
representative continuous mobile sensing applications,
and then discuss some existing platforms for serving
such applications.

A. Continuous Mobile Sensing Applications

Many modern smartphones and wearables are
equipped with a number of sensors, creating opportu-
nities for application which can use feeds from these
sensors. Of particular interest to us is continuous mobile
sensing, which involves continual sampling of sensors
over a period of time. A number of applications rely on
continuous mobile sensing across a variety of domains,
from healthcare (e.g., [4]) to social networks (e.g., [5])
to environmental monitoring (e.g., [6]) to transportation
(e.g., [7]–[9]) and human activity recognition (e.g., [10],
[11]).

Human activity recognition has opened the door for
new types of applications in the field of personal health-
care such as fitness monitoring, elder-care support and
chronic care [11]. Activity recognition systems typically
have a sensing module that continuously collects rele-
vant information about the body activities (e.g., walking,
sitting, laying, etc.).

Recently, activity recognition has became a key com-
ponent in several commercial products. For example,
game consoles such as the Nintendo Wii1 and the
Microsoft Kinect2 rely on the recognition of gestures
or body movements to enhance the game experience.
While these systems are originally developed for the
entertainment sector, they have also been used for other
types of applications such as personal fitness training
[12]. Furthermore, some sports products such as the
NikePlus3 running shoes which integrate motion sensors
and offer athletes feedback on user’s performance.

Waze [8] is one of the largest community-orientated
mobile travel applications with users volunteering infor-
mation about their driving experience in real time, by
reporting on congestions, delays, and gasoline prices.
These reports then become the basis for information dis-
played on other drivers’ maps (on their mobile devices),
to help them make routing decisions. Similarly, Traf-
ficPulse [7] combines sensor data from mobile devices
with real-time traveler reports from frequent travelers,
and then offers this information to other drivers in an
aggregated form.

Mobile sensing has also been used by Uga et al. [13]
in an earthquake warning system, which uses data from

1http://www.nintendo.com/wiiu
2http://www.microsoft.com/en-us/kinectforwindows/
3https://secure-nikeplus.nike.com/plus/

accelerometers present in many modern mobile devices
to detect seismic vibrations. Devices send reports of
likely seismic activity to a server which then aggregates
the reports received to send out warnings.

B. Mobile Sensing Platforms

Energy consumption in mobile phones is a well stud-
ied research topic in literature from various perspectives
[3], [14]–[16], each offering a different approach. To our
knowledge, there is no existing approach to economize
by enabling sharing of sensing data between different
applications.

Early efforts to build frameworks for mobile sensing
applications have tended to trade off accuracy for lower
power usage by implementing algorithms which reduce
the amount of sensor data. Other frameworks [17], [18]
have tried to reduce power usage by opportunistically
offloading sensor data processing to back-end servers
in the cloud infrastructure. Other techniques rely on
adopting a variety of duty cycling techniques that man-
age the sleep cycle of sensors on the device in order
to trade off the amount of battery consumed against
sensing accuracy and latency [19]. The drawback of
these approaches is that they are not applicable to
continuous sensing scenarios.

Adapting sampling rates for human activity recogni-
tion is a well-studied research topic. SpeakerSense [20]
uses a low sampling rate to detect whether a speaker
exists. It switches to a high sampling rate when a
speaker is detected. Similarly, SociableSense [21] lets
the sensors operate at a high sampling rate only when
interesting events happen. If there are no interesting
events, the sensors are set to operate at a low sampling
rate. Although both SpeakerSense and SociableSense
use different sensor sampling rates for different con-
texts, our approach is different as we quantify the
optimal sampling rate based on the current sensing
requests while considering user accuracy requirements.

Some projects, instead of adapting the sampling rate,
achieve energy savings through optimizing sensor duty
cycles (i.e., periodic sensing and sleeping instead of
continuous sensing). EEMSS [22] is an energy-aware
framework for human activity recognition. EEMSS tries
to achieve energy savings by shutting down unnecessary
sensors, and carefully selecting sensor duty cycles. A
sensor management scheme is used to determine the
minimum sampling lengths and intervals for a set of
sensors to recognize user states and to detect state
transitions. Mercury [23] uses similar strategy to reduce
energy consumption by disabling and enabling sensors
dynamically. ShareSens addresses the orthogonal con-
cern of sharing sensor feeds.

With the growing popularity of continuous sensing, it
has also attracted the attention of hardware designers to



develop hardware processors to support it. For example,
the Little Rock project [24] at Microsoft Research is
developing energy efficient co-processors for mobile
device, dedicated to the task of continuous sensing. The
tasks of duty cycle management, sensor sampling, and
signal processing are offloaded to the new co-processor,
allowing the primary CPU to sleep more frequently,
saving the overall power consumption. The Little Rock
architecture gives programmers the flexibility to choose
between the primary processor and the co-processor for
the various tasks in their applications, but it also makes
application development more challenging.

III. SHARESENS DESIGN

We have designed ShareSens using the Actor model
[25] which is an increasingly influential model for con-
current systems. Actors are autonomous concurrently
executing primitive agents (i.e., active objects) which
communicate using asynchronous messages.
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Figure 1. ShareSens Architecture

Our design of the ShareSens is shown in Figure 1.
An optimizing sampling scheduler is used to schedule
the sampling of each sensor based on the sensing
requirements received from apps being served at the
time. The scheduler attempts to optimize the sampling
rate of each sensor exploiting opportunities for different
apps to share sensor samples when possible.

When the scheduler receives a new sampling request,
it checks if the current sampling rate – sufficient for
serving all currently served requests – can also satisfy
the new sampling rate being requested; if so, it uses
the existing sampling stream; otherwise, it changes the
sampling rate to be high enough to accommodate the
new request. The new sampling rate can be computed

by finding the greatest common divisor of the existing
and the newly requested sampling rates.4

The sensor listener is responsible for sampling sensor
data according to the sampling rate received from the
sampling scheduler. However, because sensor samples
are for all apps, there is a filter to extract the required
samples to be sent to the different apps.

Algorithm 1 Sampling Rate Adaptation Algorithm
Used in ShareSens

1: procedure SENSOR SCHEDULING
2: Input: sensor name (s) and sampling rate (r)
3: Output: sensor data stream
4: /* check if s is already scheduled */
5: if SamplingScheduler.isSensorFound (s, r) is false

then
6: SamplingScheduler.add(s, r);
7: create a new sensor listener actor for s
8: else /* if s is already scheduled */
9: /*find the GCD between r and current sampling

rate*/
10: newRate = GCD(SamplingScheduler.currentRate,

r);
11: /* adapt the sampling rate */
12: SamplingScheduler.adaptSamplingRate(s,

newRate);
13: end if
14: filter sensor data
15: send sampling streams to apps when the sensor

listener detects an event

Algorithm 1 shows the steps followed by the sched-
uler to find the optimal sampling rate for sensing
requests being served at the time. Each sensing request
specifies the sensor to be sampled, as well as the rate
at which it should be sampled. When a new request is
received, the scheduler checks if the sensor is already
scheduled; if so, it merges the current sampling rate with
the GCD of the inverse of the current sampling rate and
the new rate; otherwise, it sets up a new sensor listener
to the requested sensor.

IV. IMPLEMENTATION

A prototype of the system described in the previous
section has been implemented as an Android app. As
Figure 2 shows, our implementation is built over Actor
Architecture (AA) [26], a Java library and runtime
system for programming and executing distributed actor
systems.5 We have ported AA to Android OS for

4Appropriate granularity recommendations – such as the Android
API’s preferred sampling rates for typical use of 5Hz, 16Hz, 50Hz,
100Hz – can be placed to decrease the likelihood of very high
sampling rates.

5More precisely, it is an extension of AA for supporting resource-
bounded actor computations based on the CyberOrgs model [27].



supporting the mobile app.

ShareSens API

....

Android Platform

Apps

AA Platform

Figure 2. ShareSens Platform and APIs

A. Sensor APIs in Android

Android has a sensor API to read sensor data,
which provides access to event handlers to capture
sensor events. Android provides two event handlers
through an interface called SensorEventListener:
an onSensorChanged event is triggered when
a sensor reports a new sensor value, and an
onAccuracyChanged event is triggered when a sen-
sor’s accuracy changes.

The SensorManager class implements an Android
service which provides various methods for accessing
and listing sensors, and registering and unregistering
sensor event listeners. To start up the sensor service, an
app has to retrieve a handle to SensorManager, and
uses the handle to make registration or unregistration
calls for its event handlers.
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SensorManager
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Figure 3. ShareSens Class Diagram

B. ShareSens API

As shown in Figure 3, the ShareSensManager
class – which extends the Android platform’s
SensorManager abstract class – implements a back-
ground service to host the actors running on the sys-
tem, and defines methods for accessing and manag-
ing sensors. At runtime, the ShareSensManager
is responsible for computing the sampling fre-
quency which would satisfy all requests, and keeps
the SensorServiceActor informed of it. A
SensorServiceActor encapsulates each sensor,
and collects samples. Once an app registers a
SensorListener actor for collecting sensor data,
it begins receiving a custom stream of sensor data
collected by the SensorServiceActor (which en-
capsulates a sensor). The customization is done by a
special filter actor which knows the requirements of all
sampling requests, and accordingly extracts them from
the feed received from a SensorServiceActor, and
forwards them to the relevant SensorListeners. A
SensorListener passes the the feed it receives from
the filter to its app. Both control and data communica-
tion happens through asynchronous message passing.

As discussed before in the design section,
ShareSensManager restricts the sampling rate
to be adjusted between a set of discrete values:
(i) SENSOR DELAY NORMAL (10Hz) which
is suitable for screen orientation changes; (ii)
SENSOR DELAY UI (20Hz) which is suitable for
the user interface; (iii) SENSOR DELAY GAME
(40Hz) which is suitable for games; and (iv)
SENSOR DELAY FASTEST (80Hz) which is the
fastest rate at which sensor data is provided.

Figure 4 shows a code snippet that
implements ShareSensListener and
uses ShareSensManager to register an
accelerometer sensor with the normal sampling
rate (SENSOR_DELAY_NORMAL). A reference to
the sensor server is obtained in order to identify the
sensors available on the device. This requires creation
of an instance of the ShareSensManager class
by calling the getSystemService() method
and passing it the SENSOR_SERVICE argument.
A reference to the accelerometer sensor can be
obtained using the getDefaultSensor() method by
passing in the type constant for a specific sensor
(Sensor.TYPE_ACCELEROMETER).

Similar to sensor APIs in Android, raw
sensor data is monitored by implement-
ing the onAccuracyChanged() and
onSensorChanged() callback methods provided
through the ShareSensListener interface.



public class ShareSensExample implements
ShareSensListener {

private ShareSensManager mShareSensManager;
private Sensor mAccelerometer;

@Override
public ShareSensExample() {
mShareSensManager = (ShareSensManager)

getSystemService(Context.SENSOR_SERVICE);
mAccelerometer = mShareSensManager.
getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
mShareSensManager.registerListener

(this, mAccelerometer,
ShareSensManager.SENSOR_DELAY_NORMAL);

}

@Override
public final void onSensorChanged(SensorEvent

event) {
// Do something with the sensor event.

}

@Override
public final void onAccuracyChanged(

Sensor sensor, int accuracy) {
// Do something here if sensor
// accuracy changes.

}
}

Figure 4. ShareSens API Usage Example

V. EVALUATION

A set of experiments was carried out to measure the
overall improvement achieved in power consumption
by using ShareSens, as well as ShareSens’s power
footprint. We used the PowerTutor software [28] for our
power measurements.

A. Experimental Setup

For our experiments, we used a Samsung Galaxy
Note II phone running Android OS ver 4.4, and com-
pared ShareSens with the default Android API for the
power consumed in serving identical sensing requests.

To measure the overall improvement in power con-
sumption, we made measurements of power used by
ShareSens and the Android API for artificially generated
sensing loads. The loads were designed to simulate
applications with mixes of continuous sensing demands,
ranging from light to heavy. For each case, measurement
were done over the period of 60 seconds, where fresh
requests could arrive at 5 second points. In all cases,
there was a 10 Hz request which lasted the entire 60
seconds. Additionally, 20 Hz, 40 Hz, and 80 Hz requests
were inserted at randomly selected points, each for 5
seconds at a time. The maximum number of requests
of a certain sampling rate were limited depending on
the frequency: 6 of 20 Hz, 4 of 40 Hz, and 2 of 80
Hz. This was to simulate the likelihood that higher
sampling demands – such as for fine-grained health
monitoring requiring 80 samples per second – would be
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Figure 5. Experimental Setup: Sensing Workload Scenarios

less frequent. The same three sets of measurements were
carried out for two different sensors, the accelerometer
and the orientation sensor. Figure 5 shows the light,
medium and heavy loads used in the experiments.

B. Power Consumption of ShareSens Vs Sensor APIs in
Android

As Figures 6 and 7 show for the accelerometer and
orientation sensor experiments, ShareSens delivered the
power savings we expected it to, effectively reducing the
power use to the requirement for the highest sampling
rate being requested at any time, independently of the
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Figure 6. Power Use Measurements for Accelerometer
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Figure 7. Power Use Measurements for Orientation Sensor

additional requests for lower sampling rates. This was
partly because the sampling demands we chose for the
sensing tasks were of the form 10 ∗ 2n Hz – somewhat
comparable to the sampling frequencies that Android’s
API expects applications to typically pick from (5Hz,
16Hz, 50Hz, 100Hz) – and the lower sampling fre-
quencies could be served out of the higher sampling
frequencies. More generally, the power required would
depend on the GCD of the reciprocal of the time
between individual samples taken.

Surprisingly, using the Android API led to power
consumption that was superlinear with respect to the
sum of all sampling rates requested by the concurrent
sensing tasks; most notably, in our tests, we found that
multiple requests adding up to a cumulative sampling
rate of (say) 80Hz used less power than a single request
for 80Hz, leading to a negative correlation between the
number of independent sensing streams and the power
required to serve them, for the small number of streams
we tested for.

Table I shows the total amount of energy used for
the entire 60 seconds sensing loads used in our exper-
iments. The percentage saving in the energy consumed
when using ShareSens (in comparison with the Android
API) depends entirely on the number of requests being
served, because although the power used is roughly
linear in the cumulative sampling rate of all requests
for the Android API, for ShareSens, it depends almost
entirely on the highest frequency being requested at the
time.

Table I
POWER CONSUMED FOR DIFFERENT WORKLOADS IN MJ

Sensor Workload
Android ShareSens

Avg. SD Avg. SD

Accelerometer Light 980 49 739 38

Accelerometer Normal 1,368 82 955 44

Accelerometer Heavy 1,822 98 1,249 70

Orientation Light 5,427 282 3,982 239

Orientation Normal 8,464 406 4,879 234

Orientation Heavy 12,752 587 7,127 356

C. Overhead Analysis

In order to determine the non-sensing overhead of
ShareSens, we measured the energy consumed for the
various sensing loads presented previously, albeit with-
out the actual sensing. For the light, normal, and heavy
workloads, the energy consumed was 27 mJ, 38 mJ and



52 mJ, respectively, for the accelometer, and very sim-
ilar 30 mJ, 39 mJ and 54 mJ for the orientation sensor.
In percentage terms, this was roughly 4% of the total
energy consumed in the accelerometer experiments, and
0.8% for the orientation sensor, the difference explained
by the order-of-magnitude larger overall energy demand
of the orientation sensor itself.

VI. CONCLUSIONS

With the growing ubiquity of sensor-equipped smart-
phones, wearables, and sensors in the environment, it is
more possible than ever to offer innovative applications
which utilize data that can be collected through these
sensors. However, these applications require continuous
sensing, and as the number of applications grows, so
will the demand on sensors, and the consequent demand
on batteries powering these devices. We have addressed
this challenge by developing an approach for optimizing
the frequency of data collection by sensors, which
takes advantage of the overlap in sensing requirements
of various applications. We presented our design and
prototype implementation of the ShareSens API for
Android, which can be used by applications to request
access to sensor data. Our experimental evaluation
shows that significant power savings can be achieved
using ShareSens when there are overlapping sensing
requests.

In future work, we are looking into opportunities
for updating existing applications to use ShareSens.
Although a tool could easily be developed to automat-
ically change source code to use the ShareSens API
instead of the default Android API, it is not obvious
that this would lead to the best outcomes. Particularly,
programmers coding while assuming ShareSens’s prop-
erties may very well choose different sampling rates for
the various sensors from what they would choose when
working with the default Android API. One direction
we hope to explore is the ability to allow programmers
to opportunistically pick higher sampling rates when
already available at a low marginal cost. This would
require a decision mechanism based on querying for
the current sensor sampling rates, and adapting to it.
A related question concerns fairness among different
applications in terms of which applications can request
how much sampling, and consequently use how much
energy, and how to account for this when multiple
applications piggyback on each other’s sampling rates.
One possibility would be to treat sampling privileges as
precious resources, and use an approach based on our
CyberOrgs6 model [27] to coordinate competition for
them.

6CyberOrgs is a model for resource-bounded multi-agent compu-
tations.
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