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Abstract. The growing ubiquity of a variety of personal connected com-
putational devices – each with a number of sensors – has created the op-
portunity for a wide range of crowd-sourced services. A busy professional
could find a restaurant to go to for a quick lunch based on information
available from smartphones of other people already there. Sensors on
smartphones could detect whether their owners are having lunch, wait-
ing to be seated, or even heading there.
Although the programming required for offering a new service of this sort
can be significant if done from scratch, we identify core communication
mechanisms underlying such services, which can be implemented as part
of a middleware. Service designers can then launch novel services over
this middleware by plugging in small pieces of service-specific code.
This paper describes the multi-origin communication mechanism which
we believe to underlie many crowd-sourced services. It presents our
design and prototype Actor-based implementation of middleware for
crowd-sourced services, CSSWare. We present the code for a realistic
crowd-sourced service to illustrate the ease with which new services can
be specified and launched. Finally, we present our experimental results
demonstrating scalability, performance and data-contributor side energy
efficiency of the approach.
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1 Introduction

With the growing ubiquity of personal computational devices such as smart-
phones and wearable devices, has also come the ubiquity of sensors on these
devices, as well as the potential for triggering actions virtually anywhere. This
opens up an opportunity to offer a variety of services which rely on the state of
the context in which devices are located, such as a person or a group of people
carrying the devices, their geographical location, etc. We broadly refer to these
as crowd-sourced services.

Consider a restaurant recommendation service which samples data collected
about experiences of clients at a number of restaurants in a neighborhood and
ranks them according to the service experience of these clients. The source of
the data could be sensor feeds on clients’ smartphones, used to guess whether
they are waiting, seated, enjoying their meals, paying or leaving. There could
be a similar service for recommending hospital emergency services to people.
Social media applications (Twitter, etc.) also appear to follow a similar pattern,
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where crowds contribute to collective messages by contributing free-form short
messages.

We are interested in an opportunity created by the similarity in the pat-
terns of communication required for many of these services, which we refer to as
multi-origin communication. This is the type of communication where a group
of senders contribute to a group message, without any of them necessarily tak-
ing the lead. Contrast this with a single-origin (multi-sender) communication [7],
which is initiated by a single party which solicits interest from other parties to
join together in sending a particular message. An example of the latter would be
a workplace petition drafted by an individual and presented to others to sign.
In multi-origin (implicitly also multi-sender) communication, the expectation is
that there is no single party that takes the lead. In other words, multiple parties
may autonomously launch messages which could then be aggregated in order to
create a group message.

It turns out that unlike single-origin multi-sender messages, multi-origin mes-
sages require a setup in advance. Consider a public square where a number of
citizens spontaneously begin to gather to party or protest. In this context, the
physical space of the square serves as part of a setup which allows mutual ob-
servation, an opportunity to join in or leave, to endorse, reject or refine the
collective message or experience over time. The closest electronic equivalent of
such a physical space would be social media services such as Twitter, which al-
low people to observe others’ tweets in an aggregate form (which is quite natural
in physical space, but requires filtering and counting mechanisms in electronic
space), endorse them by adopting hashtags, improve upon the message, and so
on. In general, for a crowd (or mass) -conceived communication to happen, there
is a need for a mechanism to be in place to coordinate the generation of the group
message by soliciting individual messages, receiving them, and then aggregating
them into a group message. The solicitation lays out the rules to be followed
for selection of the potential senders, receiving their messages, and aggregating
them. The communication could be one-time, periodic, or continual. There may
or may not be a time-out for responding to the solicitation. All these aspects
would be laid out in the original solicitation.

Multi-origin communication [1] serves as the core mechanism underlying
many such crowd-sourced services. In other words, key coordination mechanisms
can be provided in a platform over which a class of crowd-sourced services could
be implemented relatively easily. Here, we present our efforts in realizing that
potential by implementing a middleware for crowd-sourced services, CSSWare.
Using CSSWare, all that a service designer needs to do to launch a new service is
to identify a constituency of potential contributors, and to provide a few lines of
service-specific code for specifying the nature of contributions and for aggregat-
ing them when they arrive. Additionally, we try to (opportunistically) optimize
the data contributor side energy consumption of crowd-sourced services for the
situation where a number of services are being contributed to simultaneously. An
optimizing sampling scheduler schedules the sampling of sensors based on the
sensing requirements received from services running concurrently. The scheduler
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opportunistically optimizes the effective sampling rate of each sensor, exploiting
opportunities for different services to share sensor samples when possible.

The rest of paper is organized as follows: Section 2 presents the related work.
Section 3 describes our general approach to supporting crowd-sourced services
using multi-origin communication. Section 4 and 5 present our design and pro-
totype implementation respectively. Section 6 evaluates the work by illustrating
the ease with which new services can be implemented over our platform. It also
presents our experimental results showing scalability, performance and energy
efficiency of the approach. Finally, Section 7 concludes the paper.

2 Related Work

The term crowd-sourced can refer to two types of services: participatory sensing
services and crowdsensing services. Participatory sensing involves explicit partic-
ipation of human beings in possession of mobile devices, whereas crowdsensing
relies on sensor feeds automatically flowing from devices to servers.

Participatory crowd sensing has been used in applications ranging from assist-
ing drivers in making routing decisions based on real-time data (e.g., Waze [11]
and TrafficPulse [12] to helping response to medical emergencies (e.g., Crowd-
Help [5]) to disaster relief (e.g., in the aftermath of the 2010 Hatian earth-
quake [18]).

Among crowdsensing services, the real-time traffic information displayed on
Google Maps is arguably the most widely used one, which now also has a par-
ticipatory sensing aspect since Google’s acquisition of Waze [11] in 2012. Uga et
al. [15] have used crowdsensing to develop an earthquake warning system, which
uses data from accelerometers present in many modern mobile devices to detect
seismic vibrations.

Our work is more closely related to research focused on supporting crowd-
sourced applications. Existing efforts have taken different approaches to sup-
porting such applications in terms of programmability and generality.

Medusa [14] is a programming framework for crowd-sourced applications.
A task (such as video documentation or citizen journalism) is launched by a
requester, and workers are solicited through Amazon’s Mechanical Turk (AMT)
service. These workers – volunteering smartphone users – then provide raw or
processed data to be used as part of a social or technical experiment. An XML-
based programming language, MedScript, is used to specify the required task
as a series of several stages, from the initial recruitment of volunteer workers,
to the workers’ (say, for a video documentation task) recording videos on their
smartphones, summarizing them, and then sending them back. The stages can
involve actions selectable from a library of executables, which are downloaded to
mobile devices from a cloud server. Because Medusa requires that tasks pick from
a limited set of activities, it suffers from limited programmability and generality,
and is not applicable to a large class of crowd-sourced services.

AnonySense [6] is another framework for collecting and processing sensor
data, which pays particular attention to privacy concerns. AnonySense allows a
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requester to launch one of a selected group of applications with their parameters.
The application then distributes sensing tasks across anonymous participating
mobile devices (referred to as carriers), and finally aggregates the reports re-
ceived from the carriers. Achieving anonymity relies on separating sensor data
from identifying features (such as homes or workplaces in GPS traces) to obscure
individual identities. Similarly to Medusa, AnonySense has limitations in pro-
grammability and generality because of its limited focus on collection of sensor
data and in-network processing.

CDAS [13] is an example of participatory crowd-sensing frameworks. It en-
ables deployment of various crowd-sensing applications which require human
involvement for simple verification tasks to deliver high accuracy services. Sim-
ilar to CDAS, MOSDEN [10] is a collaborative mobile sensing framework that
operates on smartphones to capture and share sensed data between multiple
distributed applications and users.

The MECA (Mobile Edge Capture and Analysis) middleware for social sens-
ing applications [16] focuses on efficient data collection from mobile devices. It
uses a multi-layer architecture to take advantage of similarities in the data re-
quired for different applications to lower the demand on devices on which data
is being collected. MECA’s focus is limited to a narrow class of applications,
and does not address wider programmability challenges. Furthermore, MECA –
like other similar frameworks – uses the smartphone as a dumb data generator,
offloading all processing to the server layer. This increases communication cost
and does not allow applications to take advantage of data collected while the
mobile device is not connected.

In summary, existing frameworks for crowd-sourced applications focus on
narrow application areas or specific concerns, making it difficult to utilize them
for a wider class of services. Also, none of them support concurrent execution
of multiple services from within one service platform, which precludes taking
advantage of opportunities to optimize for shared sensing requirements.

3 Supporting Crowd-Sourced Services

It turns out that a large class of crowd-sourced services exhibit a similar pattern
of interaction, where members of a crowd contribute bits of information from
their respective contexts, which are then aggregated to create useful information
for clients. We have identified this pattern of interaction as multi-origin (multi-
sender) communication, which involves aggregation of the messages received
from a group of senders (referred here to as the constituency) into a group
message to be sent on behalf of the group to one or more intended recipients.

Most examples of crowd-sourced services fit the continual type of multi-origin
communication, where members of the constituency send messages on a continual
basis rather than just once; this would be useful for a service provided over the
web or through a mobile application where site visitors or application users seek
up-to-date information (say) on restaurant waiting times in a neighborhood. The
one-off type of interaction soliciting only one message from each member of the
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constituency is a special case of this general case; this would be the type of
communication used to serve one-time requests, such as to hold a census or an
election, or to satisfy a one-off request to recommend a restaurant with a short
waiting time. For some services, such as the one for restaurant recommendations,
the choice between the continual and the one-off type of communication would
depend on the frequency of requests, the number of potential senders of messages,
etc. For instance, it would not be useful to be maintaining up-to-date information
about all restaurants when there are very few requests for recommendations;
however, it would be wasteful to solicit one-off communications for frequent
requests.

From here on, we will refer to continual multi-origin communication as simply
multi-origin communication.

3.1 Multi-Origin Communication

To be precise in our presentation of continual multi-origin communication, we
specify it in terms of the Actor model [3]. Actors are autonomous concurrently
executing primitive agents (i.e., active objects) which communicate using asyn-
chronous messages.1 We represent the different parties involved in a multi-origin
communication using actors, and define the required communication in terms of
asynchronous actor messages.

The requester of a multi-origin communication makes a function call in order
to launch the communication. The call passes two parameters, the first specify-
ing the potential contributors – the constituency – to be invited to participate in
the communication, and the second specifying an aggregation method. As illus-
trated in Figure 1, an invocation of this function results in the creation of a new
coordinator actor capable of coordinating the communication, which is next told
to invite the constituency to participate. The coordinator then sends invitations
to the members of the constituency (the contributors) to send their messages;
when applicable, it also sends them parameters advising on how to construct
their contributions (such as by tapping into a set of sensors, or soliciting input
from the user), how often to send them (once or periodically, how frequently),
etc.

As the contributors send their messages, the messages are aggregated by the
coordinator as specified in its own behavior, to generate group messages on be-
half of the contributors. When a contributor’s message arrives at the coordinator,
it checks whether the message warrants an update, or whether the interval for
which it was to collect messages has passed. In both cases, it forwards an ag-
gregate of messages received since the beginning of the interval to the requester.
For example, a restaurant recommendation service available over the web would
collect periodically sent updates from various restaurants and offer up-to-date
information to site visitors.

1 Actors are emerging as the model of choice for large-scale communication systems.
Among others, Twitter and Facebook Chat have been implemented using Actor
systems [4].
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Fig. 1. Multi-Origin Communication Setup

4 Middleware Design

Our design of a crowd-sourced service (CSSWare) middleware builds on the
mechanism for multi-origin communication described in the previous section.
As illustrated in Figure 2, the sensing crowd becomes the constituency whose
input is solicited. The service continually aggregates the feeds arriving from
the crowd to create up-to-date custom views for various types of clients. For
example, if the service were for recommending restaurants, one interface could
be for prospective diners, another for the restaurant managers making real-time
staffing plans, yet another could be for a vehicular routing system interested in
improving downtown traffic flow at lunch time.
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Fig. 2. Crowd-Sourced Service

Figure 3 illustrates how the distributed run-time system for the middleware
is organized with parts executing on the service platform, on devices of members
of the constituency, as well as client devices. In the rest of this section, we discuss
these three parts separately.

4.1 Service Platform Side

The service designer uses the service creation API to create and launch a new
crowd-sourced service. A set of parameters stating service specifications is passed
through the API. These specifications identify the contributors to be invited
to participate in the service, the aggregation method to be used, as well as a
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Fig. 3. System Architecture

description of the feeds solicited from the contributors in terms of specific events
of interest, such as arrival at a restaurant, being seated at the table, etc.

To launch a new service, the service manager (see server in Figure 3) cre-
ates a new service coordinator to coordinate the communication between the
contributors and the CSSWare platform, which is capable of coordinating the
communication between the contributors and the CSSWare platform. Next, it
sends invitations to the contributors to send their events – when one is detected
– to the coordinator. It also sends them parameters advising on how to detect
events, construct their messages, and how often to send them (once or periodi-
cally, how frequently, etc.).

Contributor events received by a service coordinator are handled by its event
aggregator, which in turn reports the events in aggregate form to the CSSWare
platform’s event receptionist. The aggregated events are then passed on to the
service manager, which processes them to update the service’s state, which is
forwarded to the service interface manager to deliver appropriate views requested
by clients through custom interfaces.

4.2 Contributor Side

To launch a service, the platform’s service manager sends invitations to contrib-
utors to participate in the service. It also sends them parameters advising on how
to detect events and construct their messages (i.e., sensing parameters). Event
detection is carried out by dedicated event detection actors, who generate event
feeds using relevant sensor feeds, which are then sent to the service coordinator.

An optimizing sampling scheduler schedules the sampling of each sensor
based on the sensing requirements received from the service coordinator for each
service being served at the time.

Sampling Scheduler

The scheduler attempts to optimize the sampling rate of each sensor exploit-
ing opportunities for different services to share sensor samples when possible.
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When the scheduler receives a new sampling request, it checks if the current
sampling rate – sufficient for serving all currently served requests – can also sat-
isfy the new sampling rate being requested; if so, it uses the existing sampling
stream; otherwise, it changes the sampling rate to be high enough to accommo-
date the new request. The new sampling rate can be computed by finding the
greatest common divisor of the existing and the newly requested sampling rates.

The sensor listener is responsible for sampling sensor data according to the
sampling rate received from the sampling scheduler. However, because sensor
samples are for all apps, there is a filter to extract the required samples to be
sent to the different apps.

Algorithm 1 shows the steps followed by the scheduler to find the optimal
sampling rate for sensing requests being served at the time. Each sensing request
specifies the sensor to be sampled, as well as the rate at which it should be
sampled. When a new request is received, the scheduler checks if the sensor is
already scheduled; if so, it merges the current sampling rate with the GCD of
the inverse of the current sampling rate and the new rate; otherwise, it sets up
a new sensor listener to the requested sensor.

A more detailed presentation of the sampling scheduler can be found in [2].

Algorithm 1 Sampling Rate Adaptation Algorithm

1: procedure Sensor Scheduling
2: Input: sensor name (s) and sampling rate (r)
3: Output: sensor data stream
4: /* check if s is already scheduled */
5: if SamplingScheduler.isSensorFound (s, r) is false then
6: SamplingScheduler.add(s, r);
7: create a new sensor listener actor for s
8: else /* if s is already scheduled */
9: /*find the GCD between r and current sampling rate*/

10: newRate = GCD(SamplingScheduler.currentRate, r);
11: /* adapt the sampling rate */
12: SamplingScheduler.adaptSamplingRate(s, newRate);
13: end if
14: filter sensor data
15: send sampling streams to services when the sensor listener detects an event

4.3 Client Side

A service can have various types of clients subscribed to different views of the
service’s state, each provided by a custom interface. When a client requests
subscription to a particular type of view, the request manager inside the client
app constructs a custom view subscription request. This request is passed on to
the service view interface, which is transmitted through the service request API
of the CSSWare platform (see Figure 3). The platform adds the client to a list
of subscribers to that view of the service, and begins sending it all updates.
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5 Middleware Implementation

A prototype of CSSWare has been implemented as an actor system. The pro-
totype has two parts: a server implementing a crowd-sourced service platform
(about 7,500 lines of code), and a mobile app supporting both client and con-
tributor functionalities (about 4,600 lines of code).

Our implementation is built using the CyberOrgs [8] extension of Actor Ar-
chitecture (AA) [9], a Java library and runtime system for distributed actor
systems. Crowd-sourced services run over CSSWare, which runs over the Cy-
berOrgs runtime system.

For the client and contributor side, we have ported AA to Android OS for
supporting the mobile app.

5.1 Service Platform Side

To launch a new service, first, the requested service’s meta data (i.e., its title and
description) is added to the list of published services, which lists active services
visible to contributors. Next, the service manager creates a service actor which
invites potential contributors to send their events to the service’s coordinator.
It also sends them parameters advising on how to construct their contribution
messages. After inviting the contributors, a new service view is created in the
service request API in order to serve clients’ requests.

As contributors to a service detect and send events, the events are aggre-
gated by the coordinator and reported to the service manager through the event
receptionist (see Figure 3). The service manager collects aggregated events until
a sufficient number of them have been received (as determined by a sufficiency
condition provided by the service designer in the form of a function) and then
updates the service state, revising the custom service views available to the
clients.

5.2 Contributor Side

For the contributor (and client) side, we have ported CyberOrgs to Android
OS, and implemented a self-contained application over it which runs on the
Android OS (ver. 5.1). The current implementation supports contributions based
on feeds from the GPS, accelerometer, microphone, magnetometer, gyroscope,
pressure, humidity, temperature and light sensors. A set of high-level sensor
events has been pre-implemented in terms of these (low-level) sensor events
– as executable specifications – which a service designer can draw from and
customize by providing parameters. These high-level events form the basis for
service events. For each high-level sensor event feed, the list of required low-
level feeds is provided in the form of a list, where each entry identifies a sensor
and specifies the rate at which it should be sampled. These specifications are
typically only a few lines of code, varying between 7 and 18 lines of code for
the triggers used in the example service prototypes. The code for using high-
level sensor events to generate the service events is typically even shorter. The
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current prototype does not have a way for a service designer to add completely
new high-level sensor or service event types; ongoing work is developing a way
to allow that.

As shown in Figure 4, the runtime system executing on the Android device
has two components: the sampling scheduler and the event detector.

Sampling Scheduler. As described in Section 4.2, the sampling scheduler sets a
sampling rate for each sensor based on the received sensing parameters. The
scheduler first parses the service parameters to extract the coordinator name
and the list of the service’s event feeds.

Sensor listeners are responsible for sampling sensor data according to the
sampling rate received from the sampling scheduler. The scheduler optimizes
sensor sampling feeds by opportunistically sharing them between different service
feeds.

Event Detector. Because the data sampled from a sensor can be for multiple
event feeds, the data is filtered to extract the sub-feed pertinent to each event
feed being served, and only that sub-feed is forwarded to the relevant event
detection actor. An event detection actor monitors the sensor feed it receives for
event triggers; when it sees one, it fires the event off to its service coordinator.

event actor

...
.

platform
service

schedulerparameters

sensing
filter

sampling

mobile app

coordinator

event

event
...

.

sensor listener event detector

samples

samplesrate

rate event

requirements
sampling

Fig. 4. Contributor Side

An event detector does not maintain a local record of the triggered events
itself; all events are sent to the service coordinator.

Because the contributor side of the system will likely execute on battery-
operated mobile devices, it is important that contributors have the ability to
either develop or adopt simple resource consumption policies to avoid undesired
battery drain. We hope to utilize the fine-grained resource management features
already present in the CyberOrgs [8] extension of Actor Architecture which we
have used in our prototype. For now, we have implemented a feature allowing a
service designer to specify resource limits after reaching which the contributor
device would stop contributing feeds.

5.3 Client Side

Client side of the platform is implemented as part of the Android application
implementing the contributor side. When a new service is launched, each client
receives a notification about the launch. Multiple views are supported through
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custom interfaces installed by the service designer. A client interested in sub-
scribing to a service can examine available views using the service view interface
(see Figure 3), and then use the service request API to subscribe to the desired
view.

There is a collection of four general purpose view interfaces pre-implemented
in the platform, which average at about 85 lines of code (the largest at about
100 and the smallest at 75 lines).2 Although these interfaces are sufficient for
the examples we have implemented, and for services with similar client side
requirements, additional interfaces would need to implemented for different types
of services. In our current prototype, there is no way for service designers to
program these interfaces themselves; however, we plan to provide a way for
new (general purpose or custom) interfaces developed by service designers or
other parties to be installed or added to a repository from which they could be
installed.

6 Evaluation

In this section, we present our evaluation of CSSWare for both the programma-
bility of new services, as well as our experimental evaluation for performance,
scalability and energy efficiency.

6.1 Programmability

The main programmability advantage of using CSSWare is in the orders of mag-
nitude lower number of lines of code required for launching a new service. The
prototype restaurant recommendation service presented in this section required
41 lines of code for the server and contributor side combined; in comparison,
an equivalent standalone service we implemented required 6,142 lines of code. A
twitter-like messaging service we implemented, which is not discussed in greater
detail because of space constraints, similarly required 46 lines of code instead
of 4,768 lines for an equivalent standalone service. For reference, the server and
contributor end of the CSSWare platform required 7,473 and 4,622 lines of code
respectively.

Restaurant Recommendation Service

Consider the type of restaurant recommendation service previously described
in Section 1, where mobile devices of people visiting restaurants in a neighbor-
hood automatically send real-time updates about the service they are receiving
to a service provider, which then aggregates this information for people searching
for restaurants. We assume that information required for generating these feeds
can be gathered automatically by the devices by tapping into various sensors to
determine when someone arrives at a restaurant, when they are waiting to be

2 These 350 lines of code are included in the previously mentioned roughly 4600 lines
of code for the Android application’s implementation.
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seated, when they sit down, when they are served, when they finish eating, and
when they leave. The information could be coarser or finer grained depending on
the device, usage habits, quality of the behavior detecting software, etc. These
updates from personal mobile devices could then be aggregated by a service
provider to rank restaurants according to criteria such as the amount of wait
time before being seated, the length of time taken dining (shorter or longer,
as preferred), the total amount of time that the user could expect to travel
to the restaurant, dine, and be back at work. The ranking could also consider
the server’s meta-knowledge about the number of people being sent to various
restaurants by the service.

Figure 5 presents our code implementing such a service as a createSensor-

Service() method. First, a number of service variables are initialized: the list
of restaurants (i.e., their names and coordinates), restaurantList, a method
to be used by the coordinator to aggregate contributions, aggrMethod, and the
sampling rate to be used for sensor feeds when a rate is not explicitly speci-
fied, Default SamplingRate. aggrMethod is initialized here to a general purpose
method for computing the average; it is to be used by the coordinator to com-
pute average waiting time. Other services could use other available aggregation
methods; our prototype provides a selection of them. There is currently no way
for a service designer to add a new aggregation method, but we plan to provide
that functionality in the future. Although here we hardcode the restaurants,
functionality can be easily added to the mobile app to allow contributors to add
previously unknown restaurants.

A sensor is set up for each of the sensor feeds required for any of the ser-
vice feeds, following which the two types of service events are defined. The first,
locationEvent, is defined to require the GPS sensor feed and is defined in terms
of a number of parameters. The “trigger” parameters identify high-level sensor
events, which become the basis for service events. For example enterPlace rec-
ognizes entering a location (a restaurant in this service). The “output” param-
eters identify the service events to be sent to the coordinator; here, visitTime
computes the difference between enterPlace and departPlace. Additional pa-
rameter types are parameters that are available to the various methods; for
example, updateInterval is available to visitTime as a parameter to decide
the frequency of feeds to send to the coordinator.

Similarly, activityEvent specified a different sensor feed related to observa-
tions of the restaurant client’s activity. It uses various sensor feeds. The triggers
detect activities of “sitting down” or “being still,” the latter using the stillTime
parameter, which are then used as the basis for a waitingTime service event to
be sent to the coordinator.

Finally, the service is created as an instance of the CrowdService class, and
launched. The constructor for CrowdService takes as parameters a title, a
description, the list of events (i.e., locationEvent and activityEvent) and
the aggregation method aggrMethod. Once the service has been created, launch
is called to launch the service.
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void createSensorService()

{

/* initialize service variables */

String placeList = "Restaurant1,52.1269,-106.7618;

Restaurant2,52.1156,-106.5997; .......";

int aggrMethod = ServiceEnum.average;

int Default_SamplingRate =

SensorManager.SENSOR_DELAY_NORMAL;

/* defining sensors */

Sensor GPS = new Sensor (ServiceEnum.GPS,

Default_SamplingRate);

Sensor accelerometer = new Sensor(

ServiceEnum.accelerometer, Default_SamplingRate);

Sensor gyroscope = new Sensor(

ServiceEnum.gyroscope, Default_SamplingRate);

/* define a service event */

ServiceEvent locationEvent = new ServiceEvent

(ServiceEnum.sensorEvent, new List<Sensor>(){GPS},

new List<EventParam>(){

createParam("trigger",ServiceEnum.enterPlace),

createParam("trigger",ServiceEnum.departPlace),

createParam("placeList",placeList),

createParam("updateInterval",30),

createParam("output",ServiceEnum.visitTime),

});

/* define a service event */

ServiceEvent activityEvent = new ServiceEvent

(ServiceEnum.sensorEvent, new List<Sensor>(){

accelerometer,gyroscope},

new List<EventParam>(){

createParam("trigger",ServiceEnum.sitDown),

createParam("trigger",ServiceEnum.still),

createParam("stillTime",1),

createParam("output",ServiceEnum.waitingTime),

});

/* create and launch the service */

CrowdService service = new CrowdService(title,

description, new List<ServiceEvent>()

{locationEvent, activityEvent}, aggrMethod);

service.launch();

}

Fig. 5. Restaurant Recommendation Service
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6.2 Experimental Evaluation

We experimentally evaluated CSSWare in terms of performance, scalability and
energy efficiency. Our experiments were conducted on a prototype Actor-based
implementation of CSSWare. On the contributor side, we used a Samsung Galaxy
Note II phone with a 1.6GHz quad-core processor and 2GB of RAM running
Android OS ver 5.1. The server ran on a Windows 7 laptop equipped with a
2.6GHz quad-core Intel i7 processor and 8GB of RAM.

We installed instrumentation in the server and mobile application (i.e., con-
tributor and client) parts of our prototype restaurant recommendation service to
measure the processor time taken to perform various tasks. Instrumentation was
also added to the contributor side to measure energy consumption of sensing.

Performance and Scalability

Service Platform Processing Demand. To evaluate the scalability of the server,
we measured the resources required to host a service.

We created and launched a set of instances of the previously described restau-
rant recommendation service with their required frequencies of event feeds dis-
tributed over a normal distribution function. Specifically, we picked 150 random
values with an average of 6.7, which added up to 1,000. We created 150 services
with the randomly chosen feed frequency requirements, adding up to a cumula-
tive feed frequency of 1,000 feeds per second. Each service received feeds from
10 restaurants. Note that the event feeds here are feeds of higher level events
detected at the contributor end; these are not the raw data received at a high
frequency from the sensors. In other words, the average frequency of 6.7 events
per second per service would mean that something interesting is observed at
some contributor device related to the service at the rate of 6.7 per second. Fur-
thermore, we used a window size of 20 for recently received feeds for any window,
this is the number of recent feeds which were used to compute a score for the
restaurant. For this local aggregation, we simply maintained the average wait
time for the restaurant, which required O(1) amount of time to maintain. These
local aggregates for restaurants fed into the creation of a global aggregate in the
form of a ranked list of the restaurants based on their scores, which amounted
to a single step of insertion sort to maintain a sorted list, with an O(n) cost.3

Table 1 separately shows the one-time processing costs involved in creation
of a new service as well as on-going processing costs as each event feed is received
and processed. Creating service and coordinator actors – the former also includ-
ing parsing the service’s meta data (i.e., title and description) and adding the
new service to the published service list – took 13.04ms and 11.67ms on average,
respectively. Initializing the global view for the service required 7.84ms. In terms
of on-going costs, receiving and parsing an incoming event feed required 7.35ms
on average. The cost of local aggregation to keep track of the average of the last
20 waiting times for a restaurant was 0.024ms on average. This aggregation has

3 Although this performs well for the small number of restaurants, it would be more
efficient to use a binary search tree to keep a large number of restaurants sorted.
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O(1) complexity. We also measured costs for O(log n), O(n) and O(n2) complex-
ity local aggregation functions as shown in the table. The global aggregation for
ranking the 10 restaurants incurred an average processing cost of 0.95ms.

To put these numbers in some context, given the 8.325ms required per feed
on an on-going basis, about 120 event feeds could be processed by a server of our
configuration per second. This could support a single service where 120 events
are being collectively detected by the contributors every second, or 10 services
which are each receiving about 12 feeds per second on average, and so on. In
a broader context still, assuming 40% of the population dines out at a meal
time,4, assuming the diners are distributed somewhat evenly over a period of
two hours, and each diner’s device is sending 3 events over the course of their
meal (indicating arrival, seating, departure) a server of our modest configuration
could process 288,288 diners’ data, equivalently data for a city of about 720,720
people. In practice, data from a small fraction of the diners could be used,
allowing service for an order of magnitude higher population.

That said, our global aggregation function assumed only 10 restaurants. Al-
though this may be reasonable because individuals requiring restaurant recom-
mendations are not likely to be close to hundreds of restaurants, narrowing
down the selection before aggregation would mean custom global aggregations,
each costing the 0.95ms. However, this custom aggregation could happen on the
client’s own device, without impacting the server’s scalability. Alternatively, for
a truly global aggregate for a city with (say) 10,000 restaurants, an O(log n)
binary search tree could be used to keep the restaurants sorted; only the top few
would ever need to be fetched, limiting the fetching cost.

Table 1. Average Processing Time at the Server Side in ms

One-Time Per-Service Costs Mean SD

Create a service actor 13.04 2.63

Create a coordinator actor 11.67 1.74

Create a service view 7.84 0.98

Total processing time 32.55 5.35

Per-Event-Feed Costs Mean SD

Process an event feed 7.35 1.11

Local aggregation (O(1) cost) 0.024 0.0021

Local aggregation (O(logn) cost) 0.078 0.0083

Local aggregation (O(n) cost) 0.280 0.0349

Local aggregation (O(n2) cost) 0.680 0.0987

Global aggregation (10 Restaurants) 0.95 0.17

Total processing time (O(1) local aggregation) 8.325 1.28

4 Zagat 2014 restaurant survey reported that an average American ate out or bought
47% of their lunches or dinners
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Contributor Processing Demand. On the contributor side, again, we separately
measured the initial cost of handling a new service’s request for contribution, as
well as the on-going cost of serving the service. The average total of measured
one-time cost was 54.87ms (SD 3.57). The on-going costs measured were per
sensor feed: every time a piece of raw data was received from a server, its average
total processing cost amounted to 8.68ms (SD 1.02).

To put this on-going cost in perspective, about 115 sensor feeds per second
could be handled on a device of our configuration (assuming no other compu-
tations executing). If an average service requires as many as 10 data samples
per second (from a variety of sensors), 11.5 of such services could be supported;
if an average of 1 data sample per second is required per service, a more likely
scenario, 115 services could be simultaneously contributed to.

Client Processing Demand. For the client side as well, we measured the one-
time processing costs of accessing a new service, as well as the on-going costs of
receiving updates. The average total of measured one-time costs was 35.53ms.
The total of measured per-refresh on-going costs amounted to 60.9ms on average,
with 28.7ms (SD 3.9) for processing the update, and 32.2ms (SD 6.4) for display.
In other words, a client could be simultaneously subscribed to and receive up-
dates from 16 services every second. This is not very meaningful considering that
more than half of the processing cost is for graphically displaying the update,
which is not likely to happen simultaneously for more than only a few services.
If we assume that only one service’s updates are actually displayed at a time,
more than 30 services could be supported in the background where interesting
updates could lead to notifications, invitations to display, etc.

Energy Consumption of CSSWare vs. Standalone Services

Finally, a set of experiments was carried out to measure the overall improve-
ment achieved in energy consumption by using CSSWare’s sampling scheduler
on the contributor device. We used the PowerTutor software [17] for our energy
measurements.

To measure the overall improvement in energy consumption, we made mea-
surements of energy used by CSSWare and identical standalone services imple-
mented without using CSSWare. The sampling scheduler improved energy con-
sumption of accelerometer and gyroscope sensors by up to 24.60% and 26.63%,
respectively. However, the percentage savings depend entirely on the number of
requests being served, because although the energy used is roughly linear in the
cumulative sampling rate of all requests for the standalone services, for CSS-
Ware, it depends almost entirely on the highest frequency being requested at
the time, from which other requests are also served.

Overhead Analysis. In order to determine the non-sensing overhead of CSS-
Ware, we measured the energy consumed by the contributor device side of the
framework, albeit without the actual sensing. The average energy consumed was
measured to be 72.9 mJ for the accelerometer, and a very similar 81 mJ for the
gyroscope sensor. In percentage terms, this was roughly 4% of the total energy
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consumed in the accelerometer experiments, and 0.8% for the gyroscope sensor,
the difference explained by the order-of-magnitude larger overall energy demand
of the gyroscope sensor itself.

7 Conclusions

With the growing ubiquity of sensors and mobile devices, it is more possible
than ever to offer innovative services based on both what the millions of sensors
on people’s devices are sensing, as well as what individuals are willing to ac-
tively contribute. However, the barriers to offering such services continue to be
prohibitive for most: not only must these services be implemented, they would
inevitably compete for resources on people’s devices.

We have argued in this paper that many crowd-sourced services, including
prominent social media services (if we consider their role of helping evolve col-
lective messages), require similar communication mechanisms. We focus on one
such mechanism – multi-origin communication – which allows a number of au-
tonomous participants to contribute messages which can then be aggregated to
create group messages on behalf of all. We introduced an approach to support-
ing crowd-sourced services using multi-origin communication, and presented our
design and implementation of an Actor-based middleware for crowd-sourced ser-
vices as a platform for launching such services. We illustrated the ease with which
new services can be launched by presenting code for a prototype implementation
for a crowd sensed restaurant recommendation service requiring fewer than 50
lines of main service specification code, with less than 100 lines of additional rel-
evant code from available libraries of aggregation functions, feed specifications
and service view interface. Finally, we experimentally evaluated the scalability
of the approach. Most notably, even our modestly configured server could po-
tentially provide a restaurant recommender service to a population of millions;
contributor devices could contribute to tens if not hundreds of services simulta-
neously; client devices could monitor tens of services.

We have additionally addressed the challenge of satisfying the energy needs
of a potentially large number of services requiring sensor data continuously. Use
of the sampling scheduler takes advantage of the overlap in sensing requirements
of various applications to achieve significant energy savings when there are over-
lapping requirements, with minimal overhead.

In on-going work, we are developing mechanisms for service designers and
third parties to add new service feed specifications, custom service view inter-
faces, and aggregation functions. This will allow a larger variety of services to
be implemented. We are also working on further simplifying programmability
of services through web-based graphical interfaces. Finally, we would like to ap-
ply our approach for fine-grained resource coordination to refining the sensor
sampling scheduler, and more generally to manage the resource demands that a
larger number of services may place on resource-constrained mobile devices.
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