
CSSWare: An Actor-Based Middleware for Mobile
Crowd-Sourced Services

Ahmed Abdel Moamen and Nadeem Jamali
Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada

ama883@mail.usask.ca, jamali@cs.usask.ca

ABSTRACT
The growing ubiquity of personal connected devices – each
with a number of sensors – has created the opportunity
for a wide range of crowd-sourced services. Although the
programming required for offering new services can be sig-
nificant if done from scratch, we identify core communica-
tion mechanisms underlying such services, and implement
them in a middleware, CSSWare. Service designers can then
launch novel services over CSSWare by simply plugging in
small pieces of service-specific code. This paper describes
the key multi-origin communication mechanism underlying
many crowd-sourced services, presents our design and im-
plementation of CSSWare, an actor-based middleware, and
evaluates it programmability benefits and scalability.

Categories and Subject Descriptors
H.4 [Ubiquitous and mobile computing]: Miscellaneous

Keywords
CSSWare, Middleware, Crowd-Sourced Services, Actors

1. INTRODUCTION
With the growing ubiquity of personal computational de-

vices has also come the ubiquity of sensors. This has opened
up opportunities to offer services which rely on the context in
which devices are located. Consider a restaurant recommen-
dation service which samples data collected from customers
at a number of restaurants and ranks them by wait times. In
social media applications as well, crowds contribute to col-
lective messages by contributing free-form short messages.
We broadly refer to such services as crowd-sourced services.

We have previously [1] argued that the core mechanism
underlying many crowd-sourced services is multi-origin com-
munication, where a group of senders contributes to a group
message, without any one of them taking the lead. Here,
we use that approach to implement a middleware for crowd-
sourced services, CSSWare, which allows services to be im-
plemented using just a few lines of code.

Crowd-sourced can refer to participatory sensing services
and crowdsensing services. Participatory sensing involves
explicit participation by human beings in possession of mo-
bile devices, whereas crowdsensing relies on sensor feeds au-

tomatically flowing from devices to servers. We discuss be-
low some existing frameworks for enabling such services.

Medusa [5] is a programming framework for crowd-sourced
applications, where tasks are carried out by volunteer work-
ers who provide raw or processed data for social or techni-
cal experiments. Medusa has limited applicability because
of the limited types of activities that the tasks can involve.
MECA [6] is a middleware for efficient data collection from
mobile devices. It uses a multi-layer architecture to take
advantage of similarities in the data required for different
applications to lower the demand on the devices on which
data is being collected. MECA’s focus is limited to a nar-
rower class of applications, and does not address the wider
programmability challenges which we do.

2. DESIGN AND IMPLEMENTATION
Most examples of crowd-sourced services fit the contin-

ual type of multi-origin communication, where members of
a constituency send messages on a continual basis; this is
useful for a service where clients seek up-to-date informa-
tion (say) on restaurant waiting times in a neighborhood.
From here on, we will refer to continual multi-origin com-
munication as simply multi-origin communication.

We specify multi-origin communication in terms of the
Actor model [2]. Actors are autonomous concurrently exe-
cuting primitive agents (i.e., active objects) which communi-
cate using asynchronous messages. The requester of a multi-
origin communication makes a function call to launch the
communication, with parameters specifying the potential
contributors (the constituency) and the aggregation method.
An invocation of this function creates a coordinator, which
then invites the constituency to participate. As the contrib-
utors send their messages, the messages are aggregated by
the coordinator, and forwarded to the requester.

Design. The design of our middleware builds on the mech-
anism for multi-origin communication. The sensing crowd
becomes the constituency whose input is solicited (Figure 1).
The service continually aggregates the feeds arriving from
the crowd to create up-to-date custom views for various
types of clients. For example, if the service were for recom-
mending restaurants, one interface could be for prospective
diners, another for the restaurant managers making real-
time staffing plans, yet another for a vehicular routing sys-
tem to improve downtown traffic flow at lunch time.

The distributed run-time system for the middleware is
organized into three parts, executing on a platform server,
on devices of data contributors and service clients. Figure 2
illustrates the organization of the platform server.

A service designer uses the service creation API to create
and launch a new crowd-sourced service, passing parame-
ters to identify the contributors, the aggregation method,
and the types of feeds solicited from the contributors. The



...

service

. .
 . 

. .

se
ns

in
g 

cr
ow

d
...

. 

interface

interface
clients

clients...

Figure 1: Crowd-Sourced Service

service manager then creates a new service coordinator and
invites the contributors to send events to the coordinator.
These events are aggregated by the coordinator’s event ag-
gregator and then reported to the platform’s event recep-
tionist. The service manager then uses these events to up-
date the service’s state, which is then transmitted to clients
in their preferred views by the interface manager.

Implementation. The prototype has two parts: a server
implementing the CSSWare service platform, and a mobile
app supporting both client and contributor functionalities.

Our implementation is built using the CyberOrgs [3] ex-
tension of Actor Architecture (AA) [4], a Java library and
runtime system for distributed actor systems. Crowd-sourced
services run over CSSWare, which runs over CyberOrgs.

For the client and contributor side, we have ported Cy-
berOrgs to Android OS, and implemented a self-contained
application over it. Contributor events can use feeds from
the GPS, accelerometer, microphone, magnetometer, gyro-
scope, pressure, humidity, temperature and light sensors.
High-level sensor events has been pre-implemented in terms
of these (low-level) sensor events – as executable specifica-
tions (of 7 to 18 lines of code) – which a service designer
can draw from and customize by providing parameters. Ser-
vice designers can also specify resource limits after reaching
which the contributor device would stop participating.

A collection of four general purpose view interfaces is pre-
implemented in the platform, which average at about 85
lines of code. We also plan to provide a way for new inter-
faces to be developed by service designers.

3. EVALUATION
We evaluated CSSWare for programmability and performance.

Programmability. CSSWare offers orders of magnitude
smaller size of code for launching a new service. We imple-

CSSWare platform ...

event receptionist

service
specs

manager
service

coordinators

aggregator
event

coordinator
service

interface
manager

creation
API

service

API
request
service

service designer

client request

contributor event

Figure 2: Platform Server

mented two prototype services – a restaurant recommenda-
tion service and a Twitter-like messaging service – as both
services built over CSSWare and as standalone services.

The restaurant and message services required 41 and 46
lines of code, respectively, for the server and contributor
side combined. For comparison, the two services required
6,142 lines and 4,768 lines of code, respectively, when we
implemented them as standalone services. For reference, the
server and client/contributor end of the CSSWare middle-
ware itself required 7,473 and 4,622 lines of code respectively.

Performance. We separately measured the processing costs
of one-time service launching tasks and on-going tasks on
both the CSSWare server, and the contributor/client side.
The server ran on a Windows 7 laptop (2.6GHz quad-core
i7, 8GB RAM), and the contributor/client app ran on a
Samsung Note II (1.6GHz quad-core, 2GB RAM) running
Android 4.4. The average one-time costs were 32.55ms (plat-
form), 235.21ms (contributor) and 423.91ms (client), while
the average on-going costs were 55.86ms (platform, assum-
ing linear aggregation function), 293.89ms (contributor) and
675.4ms (client). For services requiring 1 feed per minute
(second), this means support for 10,740 (179) and 2,040 (34)
services on our server and mobile hardware respectively.

4. CONCLUSIONS
We argue that many crowd-sourced services, including

prominent social media services, require similar communi-
cation mechanisms. We focus in particular on multi-origin
communication, which allows a number of autonomous par-
ticipants to contribute messages which can then be aggre-
gated to create group messages on behalf of all. We intro-
duce an approach to supporting crowd-sourced services us-
ing multi-origin communication, and present our design and
implementation of an Actor-based middleware for crowd-
sourced services as a platform for launching such services.
We evaluate the approach by assessing programmability of
new services in term of lines of code required, and provide
experimental results on performance and scalability.

5. ACKNOWLEDGMENTS
NSERC and CFI support is gratefully acknowledged.

6. REFERENCES
[1] A. Abdel Moamen and N. Jamali. Coordinating

crowd-sourced services. In Proc. of Mobile Services,
pages 92–99, Alaska, 2014. IEEE.

[2] G. Agha. Actors: A model of concurrent computation
in distributed systems. MIT Press, MA, USA, 1986.

[3] N. Jamali and X. Zhao. Hierarchical resource usage
coordination for large-scale multi-agent systems. In
Massively Multi-Agent Systems I, pages 40–54.
Springer, 2005.

[4] M. Jang, A. Momen, and G. Agha. Efficient agent
communication in multi-agent systems. In Proc. of
SELMAS, pages 236–253, 2004.

[5] M.-R. Ra, B. Liu, T. La-Porta, and R. Govindan.
Medusa: A programming framework for crowd-sensing
applications. In Proc. of MobiSys, pages 337–350, 2012.

[6] F. Ye, R. Ganti, R. Dimaghani, K. Grueneberg, and
S. Calo. MECA: Mobile Edge Capture and Analysis
Middleware for Social Sensing Applications. In Proc. of
WWW, pages 699–702, Lyon, France, 2012. ACM.


