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Abstract
The growing ubiquity of personal connected devices has cre-
ated the opportunity for a range of applications which tap
into their sensors. The sensing requirements of applications
often dynamically evolve over time depending on contex-
tual factors, evolving interest in di�erent types of data, or
simply to economize resource consumption. The code im-
plementing this evolution is typically mixed with that of
the application’s functionality. Here we separate the two
concerns by modeling the evolution of sensing requirements
as transitions between modes. The paper describes Mode-
Sens, an approach to modeling and programming multi-
modal sensing requirements of applications. The approach
improves programmability by enhancing modularity. Our ex-
perimental evaluation measures the performance and energy
costs of using ModeSens.

Categories and Subject Descriptors D.1.3 [Software]:
Programming Techniques – Concurrent Programming
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1. Introduction
An important opportunity for conserving energy for sensor-
based applications lies in optimizing sensing for the evolving
context that a device is in. Consider, for example, a health-
monitoring application which monitors a device owner’s
heart beat at a low frequency, but switches mode to monitor
several sensors when an unexpected pattern is detected. We
call this multi-modal sensing.

Multi-modal behavior has previously been examined in
various mobile device contexts: to �lter actions to be carried
out [9], to predict user behavior based on their mode [4],
to recommend optimal routes based on tra�c �ow mode
[8], or selecting promising device in a “sensing as a service”
context [7]. In contrast, we are speci�cally interested in
sensing modes, which tell us the sensing requirements of an
application’s environmental, interest or resource context.

2. Model and Implementation
Multi-modal sensing is naturally modeled using a �nite state
machine M = 〈S,Σ, δ, s0〉, where S and Σ are non-empty
�nite sets of states and inputs, s0 ∈ S is the initial state, and
δ: S × Σ → S is the state transition function. Σ contains
triggers for mode change, de�ned in terms of recently sensed
data. Sensing of speci�c data can �re a trigger t ∈ Σ which
leads to state transition from si to sj .

We have prototyped such a �nite-state machine for multi-
modal sensing as a self-contained mobile application imple-
mented over the CyberOrgs [5] extension of Actor Archi-
tecture (AA) [6] ported to Android. AA is a platform for
implementing systems of actors [3], which are concurrent
objects which communicate using asynchronous messages;
CyberOrgs help coordinate actors’ resources.

Data from several sensors – GPS, accelerometer, micro-
phone, magnetometer, gyroscope, pressure, humidity, tem-
perature and light sensors – can be collected. Higher-level
trigger events have been pre-implemented in terms of these
(low-level) sensor events – as executable speci�cations of
7 to 18 lines of code – which the developer can draw from
and customize by providing parameters.

3. Evaluation
We evaluate ModeSens in two ways. First, we state the pro-
grammability bene�ts of separating sensing mode transition
concerns from functional concerns of applications. Second,
we present experimental results on performance and energy
costs of using ModeSens. Note that the latter are intended
more to document these costs than to compare with the
alternative of mixing mode transition concerns with func-
tional concerns, which would obviously still have the same
monitoring, triggering and mode transition costs.
Programmability.Our approach to multi-modal sensing of-
fers programmability advantages by separating concerns of
the sensing mode transition from the application’s functional
code, which would otherwise be (and are) mixed. To simplify
the speci�cation of the multi-modal system, we have devel-
oped a simple graphical user interface to allow programmers
to specify the �nite state machine for the mode transitions,
by de�ning new modes, transitions between modes, and any
outputs to the application.
Experimental Evaluation. Our experimental evaluation
used a speci�c case study involving human activity recogni-
tion as a sensing application, which ran on a Samsung Note II



(1.6 GHz quad-core, 2 GB RAM, Android 5.1). We de�ned four
activity modes: stilling (i.e., being still), walking, bicycling
and driving. The stilling mode required accelerometer data,
walking mode required accelerometer and gyroscope data,
and the bicycling and driving modes required accelerometer
and GPS data. In addition, the mode transition logic also
relied on sensed data. Although not required in general, we
assumed that all sensors were to be sampled to detect mode
transition triggers at a sampling rate of 1Hz. In practice,
these samples could already be available because of sensing
for other applications as shown in [1].
Performance. We separately measured the ongoing cost of
monitoring for detecting mode transition triggers, and the
sensing and processing delays in carrying out the triggered
mode transitions.

The trigger detection mechanism checked for a trigger
on arrival of every new feed set, and examined a window
of recently sensed data to detect a trigger. We found the
trigger detection cost to depend primarily on the size of the
window of recently sensed data considered. For our case
study, we used a window of size 12, which seemed su�cient
for detecting mode transition triggers.

Table 1 shows the measured ongoing processing cost of
detecting mode transition triggers for each mode. The time
(in ms) is for both acquiring and processing the set of feeds
(one feed from each sensor) to check for a transition trigger.
Old applies when data already being collected for the mode’s
function can be utilized; New applies when fresh sensing is
required. Because the sensing for detecting triggers was
at the rate of 1Hz in our case study, this cost is also in
ms/s. The delays in transitioning individual sensors from a
current sampling rate to a di�erent one were measured to be
6.21ms (sd: 1.21), 10.71ms (sd: 1.76) and 17.39ms (sd: 2.36) for
the accelerometer, gyroscope and GPS sensors, respectively.
These led to (symmetric) delays of 12.32ms for Walking-
Stilling transition, 19ms for Stilling-Bicyclying and Stilling-
Driving, 31.32ms for Walking-Stilling and Walking-Driving,
and 1.61ms for Driving-Bicycling. These costs involved
the sampling rate changes for the sensors involved plus
a small amount of processing cost required to call for the
changes. The sampling rate change cost was incurred only
if a previously unsampled sensor was to be sampled in the
new mode, or vice versa.
Energy Consumption. Experiments were carried out to mea-
sure the ongoing energy cost incurred by the sensors for
additional sensing for detecting mode transition triggers, as
well as the cost of changing the sensors’ sampling rates to
carry out the mode change. We used PowerTutor [10] for
energy measurements. The ongoing costs were measured
to be 0.63mJ, 1.24mJ and 1.93mJ for the accelerometer, gy-
roscope and GPS sensors, respectively. These per feed set
costs amounted to mJ per second, because the sensing for
detecting triggers was at the rate of 1Hz. The cost of chang-
ing a sensor’s sampling rate was measured to be 2.42mJ,

Table 1. Cost of Detecting Mode Transition Triggers (ms/s)
Mode Accel. Gyro. GPS Total

Stilling Old: 0.39 New: 4.50 New: 7.31 12.2
Walking Old: 0.39 Old: 0.39 New: 7.31 8.09
Bicycling Old: 0.39 New: 4.50 Old: 0.39 5.28
Driving Old: 0.39 New: 4.50 Old: 0.39 5.28

3.18mJ and 4.05mJ for the accelerometer, gyroscope and
GPS sensors, respectively.
4. Conclusions
We presented ModeSens, an approach to programming mode
transition concerns of multi-modal sensing applications sep-
arately from their functional concerns. The mode transition
logic can be easily speci�ed using an appropriate �nite state
machine, for which we have implemented a simple GUI.
Our evaluation was two-fold. First, we stated the obvious
programmability bene�ts of using ModeSens. Second, we
presented experimental results documenting the processing
overhead, sensing delays and energy costs involved in using
ModeSens for achieving mode transitions. In on-going work,
we are examining the composition of ModeSens with Share-
Sens [1] to support opportunistic sharing of dynamically
evolving sensing requirements, particularly in the context
of crowd-sourced services [2].
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