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Abstract

There are several advantages of multitenancy: the serving

of multiple tenants, each with its own privileges, from the

same instance of a software system. Although the naming

convention in actor systems – actor names cannot be guessed

– naturally supports multitenancy, there is no explicit way of

managing the resource competition between tenants. There

are models for coordinating resource use in actor systems;

however, they are difficult to implement for efficient imple-

mentations of Actors. This paper presents our efforts in im-

plementing resource coordination support for actor systems

implemented using the Akka library.

Categories and Subject Descriptors D.1.3 [Concurrent

Programming]: Parallel programming
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1. Introduction

Service providers with business clients often have to launch

separate instances of their service for each client. This is

expensive in terms of resource use, often requiring dedicated

hardware to support the runtime system for each client.

An alternative to this is multi-tenancy, where the same

instance of the service can serve the needs of multiple clients

simultaneously. A requirement for such a system is the ability

to manage the resource competition between the tenants.

One way to support the functional needs of multitenancy

is by implementing systems using Actors [1]. Actors are

autonomous concurrently executing active objects, each of

which encapsulates a thread of control and behavior. The

model mandates globally unique names for actors, and these

names cannot be guessed, making it possible for multiple

tenants to coexist in the same namespace without interfering

with each other. Managing the resource competition between

tenants requires additional support for resource coordination,

as provided by the CyberOrgs model [3].

There is a growing number of implementations of Actors,

including production languages such as Scala,1 which sup-

ports actors through its Akka library.2 Although resource

coordination has been implemented for efficient prototype

implementations of Actors [4], none of the production lan-

guages currently support it. The specific mechanisms making

up these solutions do not easily transfer between languages

because of significant differences in their message-handling

and scheduling infrastructures. In other words, the opportu-

nities afforded for the required fine-grained scheduling are

very specific to each language.

This paper presents our prototype implementation of such

support as an extension3 for Scala/Akka.

2. Design and Implementation

To support multi-tenancy in an actor system, we need to

control the amount of resource used by each tenant’s actor

computation in the system. The most direct way to do so

is by controlling the scheduling of the actors’ threads [2].

However, efficient production languages such as Scala/Akka

do not use one thread per actor; it is orders of magnitude more

efficient to have a pool of threads, where each thread executes

multiple actors. One possibility could be to have all actors of

each tenant be executed by a thread, and then schedule the

threads as required. The performance would then depend on

the number of tenants hosted in the system.

A different approach to controlling resources for actors is

described in [4], where opportunities for control are found by

manipulating the order in which actor messages are delivered

for processing. Although the level of control afforded by this

approach is not as precise as what could be possible in a one-

thread-per-actor implementation, it offers sufficient control

for important classes of applications [4]. In this paper, we

apply a similar approach to actor systems implemented in

Akka. The main challenge we faced was the very different

messaging and scheduling infrastructure in Akka’s runtime

system, requiring new algorithms to be developed.

The only computational resource we consider is CPU

time, counted in 1-millisecond ticks. Ticks are consumed

by a tenant’s actors to executes computations triggered by the

arrival of messages. Allocations are made to tenants within

1 The Scala Programming Language. http://www.scala-lang.org
2 Akka Actor Library. http://www.akka.io
3 Available online: https://github.com/ama883/Akka-Resource-Control-Lib
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recurring time intervals. If a tick available to a tenant in an

interval is not consumed, it expires.

A system administrator specifies the number of ticks

per interval allocated to each tenant. To control the ticks

consumed by a tenant in an interval, the run-time system

controls the flow of messages to the tenant’s actors in that

interval. Particularly, it relies on an estimate of the number

of ticks required for processing the message, provided by the

programmer. We enable this by defining a new type of actor

messages which encapsulates expected execution time for a

message along with the Akka message.

In Akka, a message dispatcher is considered the core en-

gine for the runtime system because it controls the processor

cycles given to actors, as well as their throughput, which is

the number of messages delivered to them at a time. The

dispatcher has access to the global message queue, actors’

mailboxes, and the pool of threads which execute the actors.

When a message is sent to an actor, the dispatcher first places

it in the global message queue. When it is that actor’s turn

to be executed, the dispatcher moves the right number of

messages for that actor from the global queue to the actor’s

mailbox (as specified in the throughput), and finally, grabs

an idle thread from the thread pool, and tells it to execute the

actor for those messages.

For our extension, we control the number of messages

delivered to actors’ mailboxes using mechanisms which work

within the constraints of Akka’s message dispatcher. In par-

ticular, we add two new components to Akka’s infrastructure.

We add a reasoning component into the message dispatcher

to either deliver or postpone the delivery of messages for

an actor according to the number of ticks remaining in its

tenant’s allocation for the interval. We also add a monitoring

component in an actor’s mailbox to observe the number of

ticks consumed by it. Additionally, we added book-keeping

to keep track of tenants, their actors, and their resource alloca-

tions. To allow a tenant to maximally utilize its allocated ticks

for an interval, we replaced Akka’s default FIFO actor mail-

box queues with priority queues, queueing messages with

smaller execution times ahead of those with larger execution

times. Although this changes the messages’ order or delivery,

Actor semantics [1] explicitly allow it.

Figure 1 illustrates how the extension modifies the life

cycle of a message. Particularly, note the monitor in the actor

mailbox, and the reasoner just below that; the rest of the figure

essentially shows Akka’s default message dispatching. Once

a thread has been given messages for an actor to execute, for

each message (beginning with the top message in the priority

queue), the reasoner examines the ticks required for executing

it, compares it with the ticks remaining in the actor’s tenant’s

allocation for the interval, and executes the actor for the

message only if permissible. The monitor reports back the

actual number of ticks consumed in processing the message,

which is then deducted from the tenant’s allocation for the

interval. If the ticks required for the message exceed the

tenant’s remaining allocations for the interval, the thread is

returned to the pool, and the actor mailbox (representing

the actor’s future computations) is placed on a queue of

mailboxes waiting for the next interval.
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Figure 1: Modified Life Cycle of Message Dispatching

3. Conclusions

This paper presents a mechanism that supports multi-tenant

actor systems. This mechanism provides a set of multi-

tenancy capabilities including a provision of differential

quantities and qualities of service to clients. We prototype

such a mechanism as an extension for Akka.

One limitation of this approach is that instead of measuring

the actual execution time of the computations triggered

by messages, the system relies entirely on the information

provided by the programmer, which could be estimated

analytically or experimentally. We also implemented an

alternative solution where the system measured the actual

time taken by actors to process messages; however, because

Akka does not support the suspension of an already executing

actor, the entire computation is left vulnerable to a single

actor taking excessive resources.

In on-going work, we are also experimentally evaluating

the scalability, performance, and effectiveness of control

offered by the approaches.
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