
interActors: A Model for Supporting Complex

Communication in Concurrent Systems

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Hongxing Geng

c©Hongxing Geng, October 2017. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

In concurrent systems, such as multi-core computers, parallel systems, cloud computing systems, and sys-

tems involving mobile devices, processes interact with each other. Protocols for interactions among processes

are increasingly complex and diverse, which is in part responsible for making programming of concurrent sys-

tems difficult. Particularly, in a concurrent program, the code for communication protocols often intermixes

with the code for its functional behaviors, compromising modularity and reusability.

There is a growing body of work on separating communication concerns of processes from their functional

concerns. Although they achieve some degree of separation, they have some disadvantages. For example,

the number of communication participants is fixed in some approaches, or in other approaches, communica-

tion mechanisms, such as establishing the initial rendezvous for communication participants, are left to the

processes. In other words, existing approaches either offer static protocols that cannot handle dynamically

evolving number of participants in interactions, or offer complex initialization steps that are left mixed with

functional concerns.

I propose interActors, a model for supporting complex communications in concurrent systems. I treat

a communication as a first-class object which consists of outlets, through which processes can connect to

it, and handlers, which are responsible for handling communication logics. Outlets establish a boundary

between communications and processes in an application. New outlets can be created if necessary, to handle

dynamically changed communication patterns at run-time. We say communications are self-driven because

they have outlets and handlers that are active and therefore they can move interactions forward. More

complex communications can be constructed by composing simpler communications.

Operational semantics and compositional semantics are developed by extending the Actor model of con-

currency with support for complex communications. A prototype implementation is developed using Scala

and Akka actor library. With the intention of restricting arbitrarily complex code in communications, I de-

veloped Communication Specification Language (CSL) which excludes loops from communications and only

allows a small set of statements and expressions. interActors are evaluated using case studies and comparison

with Reo, a leading coordination model and language. The evaluation shows that interActors offer advantages

in terms of programmability, reusability, and modularity.

ii

Acknowledgements

This work would not have been possible without the support of many people. Many thanks to my adviser,

Prof. Nadeem Jamali, who consistently encouraged and inspired me and helped make some sense of the

confusion. Also thanks to my committee members, Prof. Francis Bui, Prof. Mark Keil, and Prof. Chanchal

Roy who offered guidance and support. I would like to thank Prof. Marjan Sirjani for her constructive

comments on this work.

I would like to thank Athabasca University for giving me an opportunity to pursue my Ph.D. degree

and for supporting me financially and emotionally. My colleagues always showed interest in my research,

encouraged me, and showed compassion.

Many thanks go to the office staff of the Department of Computer Science. They provide a very supportive

working environment and selfishless assistance to every graduate student. I would particularly like to thank

Gwen Lancaster, who has reminded me of my progress reports and my registration deadlines, and has

completed lots of paperwork for me.

And finally, thanks to my family – my wife Christine, my son Eric, and my daughter Emily – who endured

this long process with me and always offered support and love.

iii

This thesis is dedicated to my family.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables viii

List of Figures viii

List of Abbreviations xi

1 Introduction 1
1.1 Motivation . 2

1.1.1 Group Decision Making . 2
1.1.2 US Presidential Election . 3

1.2 Approach . 4
1.3 Contributions . 4
1.4 Outline . 4

2 Related Work 5
2.1 Middleware . 5
2.2 Software Architecture . 6
2.3 Coordination Models and Languages . 8
2.4 Reflection-based Approaches . 12

3 Communications 16
3.1 Introduction . 16
3.2 Communications . 17

3.2.1 Outlets . 18
3.2.2 Handlers . 18
3.2.3 Behaviors . 18
3.2.4 Channel – The Primitive Communication . 21

3.3 Composition . 21
3.3.1 Composition Rules . 21
3.3.2 Examples . 23
3.3.3 General Case . 24

3.4 Summary . 24

4 interActors 26
4.1 Basic Concepts . 26
4.2 Actors . 27

4.2.1 Syntax and Semantics . 27
4.3 interActors . 29
4.4 Compositional Semantics . 34
4.5 Equivalence of Communication Configurations . 38

4.5.1 Properties . 39
4.6 Discussion . 41

v

5 Implementation 43
5.1 System Architecture . 43
5.2 Classes . 43

5.2.1 CSL . 44
5.2.2 Behavior . 45
5.2.3 Outlets and Handlers . 48
5.2.4 Communication . 49
5.2.5 The Life Cycle of a Communication . 51

5.3 Examples: Communications . 52
5.3.1 Broadcaster . 52
5.3.2 Router . 53
5.3.3 Multi-Origin Many-to-Many . 54

5.4 Communication-Oriented Programming . 56
5.4.1 Example: Single-Origin Many-to-Many . 56
5.4.2 Example: Barriers . 59

5.5 Composition . 60
5.6 Summary . 63

6 Communication Specification Language 65
6.1 Syntax . 65

6.1.1 Scala Types . 65
6.1.2 Main Body . 66
6.1.3 Composition Definition . 68
6.1.4 Behavior Definition . 68
6.1.5 Statements and Expressions . 69

6.2 Discussion . 72
6.3 Examples . 73

6.3.1 Behaviors . 73
6.3.2 Communications . 76

6.4 Translator . 80
6.5 Summary . 81

7 Evaluation 82
7.1 Comparison with Reo . 82

7.1.1 Problem: Single-Origin Many-to-Many . 82
7.1.2 Problem: US Presidential Election . 85
7.1.3 Discussion . 89

7.2 Case Studies . 92
7.2.1 Gravitational n-Body Simulation . 92
7.2.2 Web Service Orchestration . 99
7.2.3 Crowd-sourced Services . 104

7.3 Summary . 107

8 Conclusion and Future Work 108
8.1 Implications . 109
8.2 Future Directions . 109

References 111

A Scala Source Code 116
A.1 CSL class . 116
A.2 MOM2M2 . 119
A.3 Using SOM2M . 119
A.4 Implementing and Testing Barrier Using MOM2M . 121
A.5 Output Merge Example . 122

vi

A.6 Output-input Merge Example . 122
A.7 Router2 . 123

vii

List of Figures

3.1 Interaction through a Communication . 17
3.2 Communication . 18
3.3 Examples of Behaviors . 19
3.4 Channel . 21
3.5 Composition: Input Merge . 21
3.6 Composition: Output Merge . 22
3.7 Composition: Output-input Merge . 23
3.8 Example 1: Communication Composition . 23
3.9 Example 2: Communication Composition . 23
3.10 Example 3: Contract Negotiators . 24
3.11 Composition: General Case . 24
3.12 Communication as a Worker . 25
3.13 Communication as a Concierge . 25

4.1 Two-layer Runtime System . 26
4.2 An actor may be viewd as an object augmented with a thread of control and a mailbox. Actors

interact with each other through asynchronous messages and may create new actors. 28
4.3 Launch a Communication . 31
4.4 An Actor Receives an Outlet . 31
4.5 An Handler Creates an Outlet . 33
4.6 An Handler Creates another Handler . 34
4.7 Input Merge Composition . 35
4.8 Input Merge Composition – Two Outlets from Same Communication 35
4.9 Output Merge Composition . 36
4.10 Output Merge Composition – Outlets from a Same Communication 36
4.11 Output Input Merge Composition . 37
4.12 Output-input Merge Composition – Multiple Output Outlets to One Input Outlet 38
4.13 Output-input Merge Composition – One Output Outlet to Multiple Input Outlets 38

5.1 System Architecture . 44
5.2 interActors Class Diagram . 44
5.3 Abstract Behavior Class . 45
5.4 Behavior: Forwarder . 45
5.5 Behavior: Counter . 46
5.6 Behavior: Timer . 46
5.7 Behavior: Applier . 46
5.8 Encryptor Implemented Using Applier . 47
5.9 Behavior: Filter . 47
5.10 Behavior: Selector . 47
5.11 Behavior: Aggregator . 48
5.12 Outlet . 48
5.13 Handler . 49
5.14 Abstract Communication Class . 49
5.15 A Communication Object . 50
5.16 First Call to setAttr . 50
5.17 Second Call to setAttr . 51
5.18 Call to launch . 51
5.19 The Life Cycle of a Communication . 52
5.20 Communication: Broadcaster . 52
5.21 Code: Broadcaster Communication . 53

viii

5.22 Communication: Router . 53
5.23 Code: Router Communication . 54
5.24 Communication: Multi-Origin Many-to-Many . 55
5.25 Code: MOM2M Communication . 55
5.26 Communication: MOM2M Version 2 . 56
5.27 Code: One-Off Aggregator Behavior . 57
5.28 Code: One-Off Spout Behavior . 57
5.29 Single-Origin Many-to-Many Communication . 58
5.30 Using SOM2M Communication . 59
5.31 Barrier Implementation Using MOM2M . 60
5.32 Dummy Communication . 60
5.33 Code: Input Merge . 61
5.34 Code: Output Merge . 62
5.35 Code: Ouput-Input Merge . 63
5.36 Example: Input Merge Three Broadcasters . 64

6.1 Communication Specification Language: Main Body . 67
6.2 Communication Specification Language: Composition . 68
6.3 Communication Specification Language: Initialization Method and Behavior 69
6.4 Communication Specification Language: Statements and Expressions 70
6.5 Trigger Example: Time . 73
6.6 Behavior: Forwarder . 74
6.7 Behavior: Filter . 74
6.8 Behavior: Counter . 74
6.9 Behavior: Applier . 75
6.10 Behavior: Timer . 75
6.11 Behavior: Selector . 75
6.12 Behavior: Sequencer . 76
6.13 Behavior: Aggregator . 76
6.14 Behavior: One-Off Aggregator . 76
6.15 Communication: Broadcaster . 77
6.16 Communication: Router . 77
6.17 Communication: Multi-Origin Many-to-Many . 78
6.18 Communication: Single-Origin Many-to-Many . 78
6.19 Composition Example: Input Merge . 79
6.20 Composition Example: Output Merge . 80

7.1 Reo Solution for SOM2M . 83
7.2 Code for Building Reo SOM2M Connector . 84
7.3 Communication: Single-Origin Many-to-Many . 84
7.4 Code for Initiating and Launching SOM2M . 84
7.5 US Presidential Election . 86
7.6 Code for Constructing a Connector for US Election . 86
7.7 Code: One-Off MOM2M and Timed MOM2M . 88
7.8 Behaviors: Timed Aggregator . 89
7.9 Election Communication . 90
7.10 Cond and Aggr Functions . 91
7.11 Creating and Launching an Election Communication . 92
7.12 n-body Simulation – Manager-worker Implementation . 94
7.13 Worker Code in Manager-worker Implementation . 95
7.14 Solving n-body Simulation Using a Communication . 95
7.15 Solving n-body Simulation Using a Simple Communication 96
7.16 n-body Simple Communication . 96
7.17 Using a Simple Communication for n-body Simulation . 96

ix

7.18 Worker Code Using a Communication . 97
7.19 Solving n-body Problem Using a Composed Communication 97
7.20 n-body Composed Communication . 98
7.21 Using the Composed Communication for n-body Simulation 98
7.22 Part Purchasing Service . 100
7.23 Two-way Multi-Origin Many-to-Many Communication . 101
7.24 Code: Two-way Multi-Origin Many-to-Many Communication 101
7.25 Manufacturer Purchasing System . 102
7.26 Code: Purchasing Communication . 103
7.27 Restaurant-recommendation System . 104
7.28 Crowd-sourced Service Communication . 105
7.29 Code: Crowd-sourced Communication . 105
7.30 Code: Recommender Behavior . 106
7.31 Code: Connector Behavior . 106

x

List of Abbreviations

ARC Actors, Roles and Coordinators
BPEL Business Process Execution Language
BSPL Blindingly Simple Protocol Language
COP Communication-Oriented Programming
CSL Communication Specification Language
IDL Interface Description Language
IWIM Idealized Workers Idealized Manager
LoST Local State Transfer
MOM2M Multi-Origin Many-to-Many
MOM2M2 Multi-Origin Many-to-Many (version 2)
MOM2M-2W Two-way Multi-Origin Many-to-Many
MPI Message Passing Interface
MPST Multiparty Session Types
PVs Positions and Velocities
RCF Reflective Communication Framework
RMI Remote Method Invocation
RPC Remote Procedure Calls
SOA Service-Oriented Architecture
SOM2M Single-Origin Many-to-Many

xi

Chapter 1

Introduction

Programming concurrent systems is difficult in part because they often involve complex and diverse inter-

actions among computational processes. Consider, for instance, a crowd-sensed restaurant recommendation

service based on data collected from diners’ smartphones. A long-lived service of this type would need to

group devices based on their geographic locations, solicit data from their devices, aggregate data from those

at the same restaurant, etc. This requires supporting a dynamically evolving set of participants. Another

thing this requires is aggregation mechanisms for transforming groups of messages into meaningful aggre-

gates, and for deciding when sufficient information has been collected to come to useful conclusions. Given

the growing need for such communications, the increasing complexity of communications, and the changing

communication patterns, I argue that communications should be supported separately in a communication

layer rather than handled by computational processes.

Although interactions have long been recognized as being important for open systems [81], interaction

protocols are often treated as a concept secondary to computations. As a result, code for interaction protocols

are often mixed with functional code, and computations use low-level primitives – locks, semaphores, or mon-

itors in shared-variable programming paradigms or message passing, remote procedure calls, or rendezvous

in distributed systems – to interact with each other.

Concurrency models, such as process calculi [38,58,59] and the Actor model [2], improve programmability

of concurrent systems by abstracting away some lower-level concerns and offering a higher-level programming

environment. However, as [11] convincingly argues, these models are action-based models of concurrency and

inevitably mix interaction protocols with functional code because they still treat interaction as a secondary

concept. The inadequacy of coordination support in the Actor model is discussed in [73]; similar concerns

apply to other concurrency models.

There is a growing body of work on separating communication concerns from functional concerns of

computational processes by promoting interaction to first-class concepts. Although they achieve some degree

of separation, they have some disadvantages. For example, the number of communication participants is fixed

in some approaches, and in other approaches, communication setup mechanisms, such as establishing the

initial rendezvous for communication participants, are left to the computations. That is, existing approaches

either offer static protocols that cannot handle dynamically evolving number of participants in interactions, or

offer complex initialization steps that are left mixed with functional concerns. Reo [10] and BSPL (Blindingly

1

Simple Protocol Language) [71] are examples. In both, interaction artifacts can be constructed separately

from computations. Computations can then be connected to these artifacts in order to interact with each

other. Although these approaches offer powerful mechanisms for constraining flow of communication, they do

not separate setting up the initial rendezvous for the computations participating in communications, leaving

it to the computations themselves. Another deficiency is that Reo (for instance) implicitly requires that

the participants should be known a priori. In both Reo and BSPL, once a set of processes has been linked

together by the connection infrastructure, the protocols sit statically over the course of an interaction, and

the processes themselves drive the communication.

In this thesis, I present interActors – a model for supporting complex communications in concurrent

systems. By treating communications as first-class concepts, which can be created dynamically, passed to

other computations, and returned as a value, communication concerns are handled separately from functional

concerns. More importantly, communications encapsulate interaction protocols that describe control flows

and active objects. Once launched, communications themselves can move interactions forward rather than

require computations to drive them forward. In this sense, communications are self-driven.

1.1 Motivation

Here, I present two examples to motivate this research by showing the inadequacy of existing approaches to

separating communication concerns.

1.1.1 Group Decision Making

Consider a group of employees who wish to have their shared concerns grouped together and communicated

with their managers. One approach could be for one employee – the communication initiator – to compose

a draft message and then inform the rest of the employees – the participants – to vote on the message. The

draft message could be sent to the managers – the recipients – or discarded based on a policy that is agreed

to by the sending parties. Because there is only one initiator and the message is sent to one or more recipients

on behalf of a group of senders, we call this a Single-Origin Many-to-Many (SOM2M) communication [34].

Group decisions can be made in different ways, such as by voting, by authority, or by negotiation [53].

Here are two possible examples of policies:

1. majority policy – a majority of participants votes “yes.”

2. authorized policy – authorized participants (maybe one or more) vote “yes” on the draft.

The first policy says that if more than half the participants agree on the draft message, the message will be

sent; otherwise, it will be discarded. The second policy says that if some special participants (a subset of the

entire group) agree on the draft, the message will be sent; the votes of other participants do not matter.

2

The votes can be gathered either by the initiator or by one of the participants. For the latter case,

the initiator would inform all participants about whom they should send their votes to. Let us say that

the communication’s initiator is the vote collector. On arrival of a vote, the initiator (also the collector)

first determines whether a decision condition has been met for the chosen policy. If it is, the initiator stops

receiving votes and checks whether the draft should be sent to the recipients or should be discarded; otherwise,

the initiator continues to wait for more votes. For instance, suppose the group chooses the majority policy

and there are 7 participants. In this scenario, the message can be sent if 4 of the participants vote “yes.”

Once the initiator has received 4 “yes” votes, it stops receiving votes because it can make a sending decision

based on the votes received so far. Similarly, the initiator can also stop receiving responses when it has

received 4 “no” votes because it can make the discarding decision when the 4th “no” vote is received.

The solution presented above embeds the communication protocol in the initiator’s code. Existing ap-

proaches for separating interactions from computations do not offer elegant solutions to this problem. For

example, one disadvantage of existing solutions is that as a new decision-making policy (e.g., authorized

policy) is installed, significant changes have to be made on existing code. My solution offers much fewer

changes on existing code by enabling communications to be reused.

1.1.2 US Presidential Election

Consider a US presidential election which involves four levels: polling station, county, state, and nation. At

polling station and county levels, aggregation of votes occurs and the totals for each candidate are reported

to higher levels. At the state level, reported county totals are aggregated and the states electoral college

votes are awarded to the winner. At the national level, state electoral college votes are aggregated until the

total number of electoral college votes for one of the candidates reaches 270, at which time the election result

is announced.

For this problem, possible approaches using existing models do not scale in terms of the number of lines

of code. For example, Reo – a leading interaction model – offers a solution for this problem, which requires

construction of an interaction artifact called a connector.1 The simplest connectors are called channels and

more complex connectors can be built by composing simpler connectors using Reo primitives. In order to

communicate with each other, computations connect to connectors. For this example, computations are

voters. Interaction code for this problem using Reo would involve creating of channels, constructing of a

connector from these channels using Reo primitives, and connecting of each voter to the connector. That

is, the number of lines of code in Reo is in proportion to the number of eligible voters. Considering that

there are about 200 million eligible voters, 113,000 polling stations, and 3,144 counties in the US, the effort

involved in building such a connector and connecting each voter to it is significant. Even worse, once a

connector is built, it is fixed, which means it does not accommodate the uncertainty in the nature of this

problem because the voter turnout is not known before the election. There is nothing inherent about this

1Detailed discussions of Reo can be found in Chapter 2

3

problem that requires making the interactions with voters so rigid. Also, there is enough in common between

interactions at the various levels that the structure of the interactions should only have to be programmed

once and then parametrized for customization.

1.2 Approach

My approach for separating communication and computation concerns:

• Moves the driving force of interactions from computational processes to communications, relieves com-

putational processes from communication tasks, and enables interactions to drive themselves

• Enables the setting up of rendezvous between communicating processes at run-time, treating it as a

communication concern

• Enables creation of libraries of novel types of communications, which can be put together to create

composite communications, launched, and used by applications at run-time.

1.3 Contributions

The contributions of this work are as follow:

• Built the interActors model on the Actor model, present its operational semantics and compositional

semantics, and studied the observational equivalence of communications. interActors separate first-

class communications from computations. Communications can be composed to build more complex

communications. Also, communications are self-driven.

• Implemented a proof-of-concept prototype of interActors.

• Developed Communication Specification Language (CSL), a language for writing executable specifica-

tion for communications.

• Evaluated interActors through case studies and comparison with Reo – a leading interaction model.

1.4 Outline

The rest of this thesis is organized as follows: Chapter 2 discusses related work. Chapter 3 introduces the

concepts of communications and their compositions. Semantics of interActors including operational semantics

and compositional semantics are presented in Chapter 4. A prototype implementation is described in Chapter

5. Chapter 6 presents the Communication Specification Language. interActors are evaluated with respect to

programmability, modurality, and reusability in Chapter 7. Finally, Chapter 8 concludes this thesis.

4

Chapter 2

Related Work

There is a growing body of work focusing on separating computations’ interaction concerns from their

functional concerns. This chapter discusses related works in middleware, software architecture, and coordina-

tion models and languages. Section 2.1 discusses middleware. Section 2.2 presents related works in software

architecture. Coordination models and languages are described in Section 2.3. Reflection-based approaches,

which are coordination models, are discussed in Section 2.4.

2.1 Middleware

I classify middleware into two categories based on their communication primitives. Low-level middleware ex-

pose low-level communication primitives to programmers. In contrast, high-level middleware provide higher-

level communication primitives.

Low-level Middleware

A number of middleware systems try to separate coordination from computation. They do so by providing

low-level primitives to address specific narrow deficiencies. For example, CORBA [78] is designed to facilitate

communications between different operating systems and programming languages. It provides an Interface

Description Language (IDL) to describe object interfaces used to communicate with the external world. MPI

(Message Passing Interface) [80] offers language-independent communication protocols particularly designed

for parallel computing. MPI programmers can use communication primitives for both point-to-point (e.g.,

MPI Send and MPI Recv) and group communication (e.g., MPI Bcast and MPI Scatter).

Java Remote Method Invocation (Java RMI) [65] is the object-oriented equivalence of Remote Procedure

Calls (RPC). An application using Java RMI has three components: an interface that declares remote

methods, a client class that calls the remote methods, and a server class that implements those remote

methods. To interact with a server, a client makes a call to a remote method, which is executed by the

server and a response is returned. Separation of concerns is realized through the declaration interface, as

IDL interfaces in CORBA.

These low-level middleware separate interfaces from their implementations. However, communication

protocols are mixed with functional code.

5

High-level Middleware

Publish/Subscribe communication middleware implements the publish-subscribe messaging pattern [29]. It

decouples publishers and subscribers in terms of space and time. Space decoupling means that the com-

municating parties do not need to know each other; time decoupling means the communicating parties can

interact with each other asynchronously. Subscribers can selectively receive published messages by publishers.

In other words, subscribers only receive a subset of the total published messages. This is realized through ei-

ther topic or content. In topic-based systems, subscribers only receive messages published to their subscribed

topics; in content-based systems, subscribers receive messages matching constraints defined by them. There

are a growing body of work on publish/subscribe systems recently. It is used in various applications, such as

wireless network [40], peer-to-peer systems [69], and location-awareness system [22].

Stigmergy is another communication scheme which decouples communicating parties. The term stigmergy

[74] was coined by the French biologist Pierre-Paul Grassé to refer to termite behavior. Loosely speaking,

stigmergy is a type of indirect interaction, in which termites can communicate with one another by modifying

environment. By indirect, we mean senders do not acquaint with receivers. Strictly speaking, stigmergy

interaction can be split into two communications: one is when a termite interacts with environment by leaving

pheromones; and the other is when other termites interact with the environment by extracting information

from pheromones left by others. Stigmergic communication has been discussed in the context of multiagent

systems [54]. Further, researchers and practitioners are attempting to take advantage of stigmergy so as

to serve human life altogether. For example, [28] is an attempt to promote a social site through exploiting

stigmergy to identify and analyze online user behaviors. Human-human stigmergy is studied in [76] in the

context of multi-agent systems.

The difference between stigmergy and publish/subscribe is that in the former, receivers have to actively

pull information from the environment; whereas, in the latter, systems actively push information to receivers

(i.e., the subscribers). High-level middleware, such as publish/subscribe and stigmergy, provide separation

of communication from computations; however, they only focus on particular communication patterns.

2.2 Software Architecture

From the software architecture point of view, a software system is a composition of computational components

responsible for functional concerns and connectors stipulating interactions between components. By dividing

a software system into components and connectors, separation of concerns is achieved. That is, components

focus on computations and connectors are responsible for interactions between components.

6

Software Connectors

The concept of software connectors was first proposed by Mary Shaw in [70]. The paper defined connectors

as “mediate interactions between components.” In this sense, an application consists of a collection of

components and a group of collectors. A comprehensive classification on connectors is discussed in [55],

in which a connector is defined in terms of channels. A connector comprises one or more channels. Each

channel provides mechanisms for transferring data and control. In addition to mechanisms, [44] argues that

connectors also require agreements because components participating in communications must share some

common assumptions in order to communicate with each other without confusion. For instance, assumptions

can be the type of data transferred, the syntax and semantics of the messages exchanged, and data encoding

conventions, etc. When considering system run-time, a connector must be instantiated. Hence, connectors

should also have types, instances, and states [44].

Although software connectors separate communications from computations to some extent, components

are still responsible for coordinating the control flow. In other words, a component not only performs

computation but also initiates method calls and manages their returns, leading to mix computation with

control. [48] proposed exogenous connectors. Exogenous connectors encapsulate control and data flow between

connected components, enabling control to originate from connectors rather than from components. A

software component models for exogenous connectors has been proposed in [46].

Collective Interfaces

Although there is a body of work on software connectors, there is no approach specifically addressing collective

communication for distributed components. Collective interfaces [14] address collective communications for

distributed components through interfaces. Collective interfaces based on the Fractal component model [17],

in which components communicate with each other through their interfaces. However, the model does not

support collective communications. Collective interfaces extend the Fractal model by allowing one-to-many

and many-to-one communications. Two collective interfaces are proposed, namely, multicast interface and

gathercast interface. A multicast interface enables parallel invocations by converting a single invocation to a

list of invocations. That is, through it, a message is sent to multiple components, and each of them can process

the message in parallel. A multicast interface enables a sender to multicast a message instead of sending

multiple individual messages. A gathercast interface enables many-to-one communications by transforming

a list of invocations from different sources to a single invocation. That is, a gathercast interface synchronizes

incoming messages and sends one aggregated message to a component.

Web Service Composition

Web service composition [6] adopts the concept of Service-Oriented Architecture (SOA). Applications consist

of a number of web services. The goal of web service composition is to compose a number of web services

7

into a work flow so that the web services are composed into an executable business process [62]. Web services

are combined in two ways: orchestration and choreography. In orchestration, a number of web services are

composed through a central web service, which orchestrates invocations of different operations on different

participating web services. The participating web services have no idea whether they are in a composition

process. The control logic for an invocation sequence is described by Business Process Execution Language

(BPEL) [8], which is a declarative language that supports web service orchestration and separates web services

and interactions between them. Choreography, in contrast, does not require a central process. Each web

service knows the business process and therefore understands in what order operations should be executed.

By comparing orchestration and choreography, we can see choreography mixes computations with com-

munications to some degree; whereas, orchestration, through a dedicated process, separates interactions from

computations successfully.

2.3 Coordination Models and Languages

The increasing need for separating coordination concerns from computation concerns gave birth to research

in coordination models and languages.

Linda

Linda [33] is thought to be the first coordination language to separate coordination concerns from functional

concerns. Computations interact with each other only through shared objects called tuples, which reside in

a shared place called tuple space. Synchronization is achieved through a blocking read primitive.

Linda defines three communication primitives: out, in, and rd. out inserts a tuple with a tag without

targeting a specific recipient into the tuple space. A computation can ask to read a tuple using either in

or rd by providing a tag. If there is tuple matching with the tag, it is read; otherwise, the reader waits.

rd reads the tuple but leaves it in the tuple space; in also removes it. Although Linda is said to offer

time-decoupling (computations can communicate asynchronously) and space-decoupling (computations do

not need to know each other), it mixes communication protocols with functional behaviours because the

communication primitives must be incorporated within computations.

Programmable Environments

A number of works [18] [61] [82] share the idea of programmable environments. The general idea is to make

the host environment of concurrent computations reactive by extending the environment with behaviors.

Among them, we choose tuple center [61] as an example to describe how they work.

A tuple center [61] is a coordination medium, which extends the standard tuple space with a behavior. A

behavior associates a communication event (i.e., a call to a communication primitive) to a set of computational

activities called a reaction. A behavior is specified in terms of a reaction specification language named

8

ReSpecT [25], which is based on first-order logic and is a language used for programming tuple centers.

When a communication event occurs, it may lead to execution of a reaction. A reaction may manipulate

tuples in the tuple center or trigger other reactions in a chain. Because reactions can be added or removed

dynamically, the behaviors of a tuple center can be changed on the fly.

Idealized Workers Idealized Manager

Idealized Workers Idealized Manager (IWIM) [9] supports coordination through a dedicated manager that

coordinates the interactions among multiple worker processes, which is similar to web service orchestration.

Communications between workers are through channels, each of which has one input end and one output end.

Workers communicate with each other through writing to and reading from their connected channel ends.

However, workers and channels are oblivious to each other, and therefore they do not know how to make

connections. The task of a manager is to create and destroy channel connections between worker processes

so that those processes can communicate with each other; whereas, worker processes are responsible for

computation. In other words, a manager constructs a communication network using channel manipulation

primitives and connects channels to worker processes. Hence, in IWIM, the separation of coordination from

computation is achieved through a manager. However, because workers communicate with each other through

channels, when a large number of workers are present, the workload of a manager, which is responsible for

creating channels and connecting them to processes, could be tedious and overwhelming. That is, IWIM is

not scalable.

Reo

Reo [10], a leading approach in coordination models and languages, offers a channel-based dataflow-oriented

coordination model. Computations can interact with each other only through connectors. The most primitive

and simplest connectors are called channels and more complex connectors can be constructed by composing

simpler connectors. A channel has two ends, namely, the source end, to which a data item is stored through a

write operation, and the sink end, from which a data item is read via a read operation. A channel is created

using a create operation. Reo assumes arbitrary number of channel types and thus allows channels types to

have user-defined semantics. A small set of commonly-used channels with simple behaviors is pre-defined,

which can be used for synchronization, asynchronization, filtering, and transformation purposes. These chan-

nels are intended to be sufficient for constructing connectors with more complex behaviors through channel

composition, which is realized through join operations. For example, an alternator allows a computation to

alternatively receive messages from a set of computations, a sequencer enables messages to be taken in a

defined sequential order, and a barrier implements barrier synchronization.

Reo has an ingenious way of orchestrating communications by using channels with special features to direct

messages flowing through a connector. However, some coordinator/initiator process has to construct required

connectors by performing operations such as create, connect, and join. Setup for a complex system with a large

9

number of components requires creating a large number of channels, composing them to create connectors,

and connecting channel ends to components, Not to mention that creating special purpose channels and

putting them together in a connector too is non-trivial for more complex interactions. If communication

requirements of a computation were to change at run-time, components would have to be disconnected, a

new connector would need to be created, components would have to be connected again, and presumably an

unwieldy suspension and resumption of the interaction would be required. Related to this drawback is also

the implicit requirement that the participants connected by a connector are known in advance and do not

change at run-time. There is no obvious clean way for accommodating such a change.

Session Types

Session types [26] can be seen as a language to define communication protocols for communicating parties,

therefore, it can be considered as coordination languages. A session is a sequence of interactions between

two parties. Session types regulate the types of messages received or sent by a party and thus specify

communication protocols between two parties. Using session types to define communication protocols usually

spreads the definition among communicating parties. For example, to describe a communication protocol

between a buyer and a seller, there are two separate definitions composing the entire protocol: a protocol

definition for the buyer and a protocol definition for the seller. These two definitions are dual to each

other. Multiparty Session Types (MPST) [39] extends session types from two parties to multiple parties.

Communication protocols using MPST are again dispersed among those communicating parties. That is, a

protocol definition must be provided for each involved party.

Blindingly Simple Protocol Language

There are also declarative approaches to build interaction protocols. A representative example of this is the

Blindingly Simple Protocol Language (BSPL) [71]. BSPL describes interaction protocols among computations

declaratively. Protocols are treated as first class entities and can be composed to form more complex protocols.

Each BSPL protocol has a unique name and includes two or more roles instantiated by interaction com-

putations, one or more parameters, and one or more references to constituent protocols or message schemas.

One parameter or some combination of parameters is defined as a key, which is the unique communication

identity when a protocol is instantiated. Furthermore, when using a protocol, it may require parameters

input from outside of the protocol and it can output values to the external world. If a protocol includes

parameters requiring input from the outside, the protocol must be used in combination with other protocols

which can provide values for those inputs. Message schemas described in a protocol define messages that

can be exchanged by two roles. Each message schema not only regulates which role is the sender and which

is the recipient, but also stipulates what information can be exchanged through defined parameters, among

which at least one indicates the unique communication identity. Protocol composition is achieved through

references to constituent protocols.

10

BSPL is information-oriented, meaning that it makes information exchange explicit and it can impose the

required flow of information. It treats interaction protocols as first-class concepts, where simpler protocols

can be composed to form more complex ones. Although these are important features, it suffers from many

of the drawbacks of Reo. BSPL implicitly constrains the number of participants in a communication, and

the types of protocols to those involving fixed numbers of participants. A realization mechanism is presented

in Local State Transfer (LoST) [72], which is a declarative approach for enacting communication protocols

written in BSPL.

Reactor Model

Reactors [66] are concurrent computations encapsulating channels and event streams. Events are messages.

Every channel belongs to a single reactor and has an associated event streams. Inter-reactor communications

are through channels and intra-reactor communications are through event streams. That is, a reactor can send

an event to a channel, which propagates the event inside the recipient reactor. One reactor can send an event

to another reactor as long as the former has the name of one of the latter’s channels. In other words, reactors

do not interact with each other directly but through their associated channels, where communications can be

processed. Hence, the reactor model separates communication from computations. A reactor can create or

terminate a channel as necessary. Channels and event streams are first class entities. As a consequence, they

can be used to compose communication protocols. A protocol can be encoded as functions or as classes and

can be used by reactors. When a reactor uses a protocol, the channels and events declared in the protocol

are instantiated. A reactor can participate in multiple communication protocols using separate channels. A

protocol instance can be used to customize the communication of one single reactor; however, a definition of

a protocol can be reused across multiple reactors.

MapReduce

Developed by Google, MapReduce [24] is a high-level programming framework for processing and generating

large-scale datasets, which applies the master-workers interaction pattern in its implementation. MapReduce

defines a work flow for a master and worker processes, and computations are carried out by programmer-

provided functions. A computation in MapeReduce is expressed as one of two tasks: map and reduce, which

are two functions written by programmers. The MapReduce library in a user program creates multiple

copies of the program. Among those newly spawned program, one is the master and the rest are workers.

The master assigns either a map task or a reduce task to idle workers. Workers executing map tasks read

input content and output intermediate results, which are buffered in memory and are written into local disks

periodically. The master is notified with the locations of those intermediate results. Workers performing

reduce tasks obtain location information from the master, read the intermediate data, and compute final

results, which are returned to the master, which, in turn, returns the result to the user program. Like web

11

service orchestration and IWIM, MapReduce achieves separation of concerns through a dedicated master

process.

Other Coordination Models and Languages

There are many other coordination models and languages developed for various domains, such as mobile ad

hoc networks [50, 63, 64], service-oriented systems [1], fault-tolerance systems [52], social collaboration [49],

and distributed applications [23,83], etc.

For example, as a coordination language, Statelets [49] provides a unified access to social collaboration

processes spanning multiple groupware tools and social networking sites. A statelet is a construct indicating

a state of a process and designating coordination rules which should be fulfilled in that state. A process is a

sequence of statelets which create more statelets. A statelet consists of two principle components: conditions

and actions. A condition describes an anticipated situation and an action will be executed if such a condition

is detected. Conditions are illustrated in the form of context queries that are constructed using binary

operators of first-order logic and are evaluated using two primitive operations: define and wait. define

merely evaluates a query expression and searches shared space for pattern instances; whereas, wait operation

constantly evaluates a query until at least one pattern instance is found. Both operations dynamically creates

a data stream which is similar to a tuple in Linda. Data streams will be used in an action. An action may

either perform commands or create new statelets.

2.4 Reflection-based Approaches

A number of coordination models have also been developed using the idea of computational reflection [51].

To separate interaction concerns from functional concerns, the idea is to add new layers into the system. In-

teractions are handled in the new layers and computations reside in the computation layer. These approaches

include syncrhonizers [27, 31], protocol stacks [13], Reflective Communication Framework (RCF) [36], ARC

(Actors, Roles and Coordinators) [67], and ActorSpaces [19].

Synchronizers

Synchronizers [31] is a language framework for multi-object coordination, which enforces declarative syn-

chronization constraints called synchronizers on a group of objects. Conceptually, a synchronizer is a special

object which observes messages and restricts message dispatch for other objects in accordance with user-

specified message patterns. In other words, messages matching a synchronizer’s message pattern fall under

the synchronizer’s control. Synchronizers have a global effect and are imposed on receivers. Also, synchro-

nizers may overlap, which means that different synchronizers can constrain the same object. Synchronizers

provides two types of constraints: (a) disabling constraints block the constrained objects from handling

12

messages which match a given pattern, (b) atomicity constraints ensure that bundled messages to multiple

objects should succeed atomically.

Built from synchronizers, scoped synchronizers [27] is a coordination model based on declarative syn-

chronization constraints. To unravel the issue that components in Internet-scale systems cannot be trusted,

scoped synchronizers restricts applications of synchronization constraints to a limited scope rather than hav-

ing a global effect. Like conventional synchronizers, scoped synchronizers are declarative synchronization

constraints with disabling constraints and atomicity constraints. Unlike conventional synchronizers, scoped

ones enforce constraints on the sources of messages rather than on receivers.

Protocol Stack

A protocol stack [13] enables communications of computations to be customized through metaobjects. Each

metaobject implements a communication protocol and can only customize communications for a single compu-

tation. A communication protocol enforced on a group of computations is implemented using the metaobjects

collectively customizing each computation. A metaobject itself can be customized by a meta-metaobject so

that a computation can be customized through a metaobject protocol stack. A stack can be changed on

the fly by installing a new metaobject or removing an old metaobject, allowing two consecutive messages

of a computation to use different protocols. In this sense, metaobjects can customize communications on a

per-message base.

Despite its benefits, this approach is too rigid in that protocols need to be explicitly added on or removed

from the stack in response to changing communication requirements. Furthermore, both incoming and

outgoing messages share the same protocol stack, which can lead to excessive overhead. Any change in

communication requirements of a computation requires removal of existing metaobjects, installation of new

metaobjects, or replacement of metaobjects with new ones, leading to changes in the interfaces between

metaobjects and between metaobjects and the computations they customize. Last, for messages which do

not require communication protocols, they too have to pass through the entire protocol stack, incurring

unnecessary computational overhead.

Reflective Communication Framework

In Reflective Communication Framework (RCF) [37], actors share a single communication protocol pool man-

aged by a communication manager. Communication protocols are implemented as actors. Like metaobjects,

in RCF, each actor has a corresponding meta level actor called messenger, which serves as the customized

and transparent mail queue for its base level actor. A messenger has four mail queues: an up and a down

mail queue is used for an outgoing message and an incoming message, respectively, which do not require

communication services from the communication manager; otherwise, an out and an in mail queue are used.

In other words, up and down mail queues serve traditional actor message; and out and in mail queues are

designed to customize communications. From this sense, RCF has performance advantage over metaobjects

13

because in metaobjects, every message must go through the entire protocol stack; however, in RCF, if a

message does not require customization, it can use up or down queue.

In addition to keeping track of communication protocols, the communication manager maintains a set

of communication message coordinator. When a message requires communication service, the communica-

tion manager assigns it to a communication message coordinator, which is responsible for composing the

communication protocols requested by the communication’s messenger. Once its job has been done, a com-

munication message coordinator is available to serve next message. New communication protocols can be

added dynamically into the protocol pool, which makes RCF suitable for dynamic environments.

Compared to metaobjects, RCF offers a more elegant way for customizing communications. However,

like metaobjects in which every message must go through the entire protocol stack, in RCF, every individual

message must go through its messenger even if the message does not require communication services, which

causes computation overhead. Moreover, it does not support protocol enforcement on groups of computations

in the way that metaobjects do, and does not support interactions between protocols.

Actors, Roles and Coordinators

Actors-Roles-Coordinators (ARC) [67] is a coordination model composing three layers: the actor layer, the

role layer, and the coordinator layer, from bottom to top. Actors are dedicated to functional behavior;

roles are static abstractions for coordinated behaviors shared by a group of actors and provide localized

coordination among those actors; and coordinators coordinate different roles. In other words, there are two

types of coordination in ARC: intra-role coordination realized by the role layer and inter-role coordination

implemented by the coordinator layer. Coordination among actors is through message manipulations that

are transparent to the actors.

The actor layer is dedicated to computational behavior without knowledge of the coordination enforced

by the role layer and the coordinator layer. Conversely, the coordinator layer is oblivious to the actor layer

and is dedicated to inter-role coordination which focuses on coordination among roles. The role layer is in

the middle and is reserved for intra-role coordination, which coordinates actors within a role.

ActorSpace

ActorSpace [19] is a communication and coordination model based on destination patterns. ActorSpace

extends point-to-point asynchronous message passing in the Actor model with pattern-direct invocation,

which was inspired by Linda. Through patterns, a group of receivers is defined; thereby, receivers can be

anonymous to senders, decoupling receivers from senders.

An actorspace is a computationally passive container of actors which provides a scoping mechanism for

pattern matching. In ActorSpace model, each actor has a list of attributes, so do actorspaces. Like actors,

an actorspace has a unique name. An actorspace may contain actors and other nested actorspaces, which

may be made visible or invisible in an actorspace. Patterns use attributes to define a group of receivers and

14

are matched against listed attributes of actors and actorspaces that are visible in the actorspace. In other

words, only visible actorspaces and actors are subject to pattern-matching in ActorSpace.

Communication in ActorSpace is through two primitives: send(pattern, message) and

broadcast(pattern, message), which augment the send primitive in the Actor model. The destina-

tion of send is defined by pattern other than an actor name as in the Actor model. ActorSpace supplies

a broadcast primitive which is missed in the Actor model. send(pattern, message) sends a mes-

sage to a single actor which is non-deterministically chosen from the group of potential receivers defined by

pattern, which is similar to IP anycast [56] insofar as communication is concerned. On the other hand, a

message is sent by broadcast(pattern, message) will be received by all actors in the group.

15

Chapter 3

Communications

Without communication, each computation in a concurrent system would become an isolated island.

Despite its importance, communication is typically treated as a secondary concept, and consequently, com-

munication concerns are intermixed with functional concerns of computations. This chapter presents a

different view about communications. With the intention of programming complex communication concerns

for applications separately from their functional concerns, a communication is treated as a first-class object.

By first-class, we mean communications can be created dynamically, be passed to other computations, be

returned as a value, and be destroyed. Because of the characteristic of first-class, the creation and usage of a

communication can be separated. That is, the creator and the user of a communication can be two different

objects.

Section 3.1 introduces our approach of separating communication and computation concerns. Then,

Section 3.2 presents the definition of communication and describe its components: outlets and handlers.

Section 3.3 describes three composition rules through which more complex communications are constructed

from simpler communications. Section 3.4 summarizes this chapter.

3.1 Introduction

When an electric appliance is to be used, it is plugged into a power outlet. When it is no longer needed, it is

unplugged. Similarly, in order to interact with each other, computations plug into the outlets of a communi-

cation. Figure 3.1 illustrates the relationship between computations and communications. In this figure, the

rectangle represents a communication, which has a set of outlets; ovals are computations. We use the shape of

power outlets to represent outlets and use the shape of plugs to denote the connection point of computations.

In order to participate in a communication, computations have to connect to the communication’s outlets

through their plugs. To leave a communication, computations simply disconnect from the communication’s

outlets like an appliance is unplugged from a power outlet. In this way, computations are separated from

communications.

Outlets establish a boundary between communications and computations in an application. Compu-

tations and communication are oblivious to each other, thus separating concerns of communications from

16

Figure 3.1: Interaction through a Communication

concerns of computations for an application. In this way, both communications and computations can evolve

independently, improving reusability.

3.2 Communications

A communication includes a set of outlets and a set of handlers. Outlets can be one of two types: input and

output. A communication receives messages from computations through its input outlets and sends messages

to computations through its output outlets. Handlers implementing communication logic process the received

messages. Our definition for communication is as follows:

Definition 1. A communication has at least one input outlet, which receives messages from communicating

parties, and at least one output outlet, which sends messages to communicating parties, and a set of handlers,

which are responsible for handling communication logics.

From the definition, a communication has two types of components: outlets and handlers. Outlets and

handlers are active objects. Outlets interact with computations through sending and receiving messages and

handlers process messages received from input outlets and send processed messages to output outlets. From

this sense, a communication is a set of active objects. Input outlets are receptionists of a communication. That

is, computations must know input outlets of a communication in order to participate in the communication.

Output outlets must hold the names of computations so as to send messages to them.

Figure 3.2 illustrates a communication. In the figure, ovals are handlers, white circles are input outlets,

black circles are output outlets, and the lines with arrows represent message flows; the communication encap-

sulates handlers. Handlers are invisible to computations. To interact with a communication, computations

have to be connected to the communication’s outlets: to send messages to the communication, computations

are connected to its input outlets; to receive messages from the communication, computations are connected

to its output outlets.

To connect to an outlet, a computation must know its name. A computation can obtain the name of

an outlet through two ways: one is as the creator of a communication; another way is from its received

message containing the name of an outlet. Because an outlet may be known by multiple computations, it

17

Figure 3.2: Communication

can communicate with those computations connecting to it. Likewise, a computation may participate in

multiple communications at the same time as long as it knows outlets of those communications. Therefore,

the relationship between computations and outlets is many-to-many.

3.2.1 Outlets

A communication must have outlets because otherwise, computations cannot participate in it and it will be

useless. An outlet is an active object and is a receptionist of the communication. Computations only need

to connect to the outlets of a communication in order to participate in it. Outlets make computations and

communications oblivious to each other.

Each outlet can be one of two types: input or output. Messages can be received at a communication’s

input outlets and sent out from its output outlets. Each outlet has a behavior, which defines what the

outlet does when receiving a message and where the processed message should be sent to. More precisely, an

input outlet of a communication receives messages from computations and sends processed messages to the

communication’s handlers or the communication’s output outlets, which, in turn, forward those messages to

computations. We describe behaviors in more detail in Section 3.2.3.

3.2.2 Handlers

Handlers hold interaction logic. A handler can send messages to other handlers or outlets. A communication

may not need a handler if it does not require any interaction logic. For example, messages sent to a point-to-

point communication are just simply forwarded from the input outlet to the output outlet without requiring

any complex logic. In other words, the set of handlers of a communication can be empty. Like outlets,

handlers present a behavior, which are discussed in Section 3.2.3. Handlers can change outlets’ behaviors by

sending them a special message, which will be discussed in Chapter 4.

3.2.3 Behaviors

Outlets and handlers have behaviors. A behavior defines how an outlet or a handler reacts with incoming

messages. Each behavior also has targets which defines where processed messages are sent to. The simplest

behavior can be forwarder, which simply forwards whatever it receives to its targets. Suppose, a communi-

18

Behavior Description

forwarder(msg, ts) forwards a received message msg to targets ts.

counter(msg, ts) counts the number of received messages so far and sends the result

to targets ts.

timer(msg, ts, t) temporally holds the received message msg for t milliseconds and

then sends it to targets ts.

applier(msg, ts, f) applies function f to a received message msg and then sends the

result to targets ts.

filter(msg, ts, f) filters a received message msg based on function f. If msg meets

the requirements of f, it is sent to targets ts; otherwise, discarded.

selector(msg, ts, select) sends the received message msg to a subset of targets ts selected

by function select.

sequencer(msg, ts, parts) a sequencer sends the received message msg to a list of partici-

pants parts one by one. Once all participants have responded, the

received message is sent to the sequencer’s targets.

aggregator(msg, ts, cond, aggr) on the arrival of a message, the message msg is added into a

message list; then function cond is applied to the message list to

determine whether a certain condition is met or not. If it is, all

received messages so far (stored in the message list) is aggregated

using function aggr and the aggregated result is sent to targets ts.

Figure 3.3: Examples of Behaviors

cation has two outlets – one input and one output, both of them have forwarder behavior, and the input

outlet’s target is the output outlet. As to this communication, its input outlet simply forwards whatever it

receives to its output outlet, which forwards received messages to computations that connect to it.

Outlets and handlers can also have more interesting behaviors. For example, an outlet can count the

number of received messages, filter out unwanted messages, aggregate a number of received messages, apply

functions (such as for encryption) to received messages, or temporally delay received messages by forwarding

them at a future point in time.

We assume there is a library of behaviors. Programmers can freely add new behaviors into the library.

Here I list commonly used behaviors in Figure 3.3 and discuss each of them below.

forwarder

The most straightforward example of a behavior is forwarder, which forwards a received message to its targets.

For an input outlet, its targets are usually handlers or output outlets; and for an output outlet, its targets

are computations.

19

As an example, forwarder can be used in a point-to-point communication, which has one input outlet and

one output outlet. Both outlets have the behavior of forwarder. The target of the input outlet is the output

outlet, whose target is a computation.

counter

A counter counts the number of received messages so far and sends the result to its targets. A counter is

useful when a computation has interest to know the number of messages but not the contents of messages.

timer

A timer temporally delays received messages for pre-defined time period and then sends them to its targets.

An example is Boomerang [16], which schedules email to be sent later in Gmail.

applier

An applier applies a programmer-defined function to received messages and sends the result to its targets.

filter

A filter uses a programmer-defined function to filter received messages. Only messages satisfying the require-

ments defined by the programmer-defined function can be sent to the filter’s targets. A filter can be seen as

a special case of an applier because it applies a function to messages and returns a boolean value.

selector

A selector selects a subset of recipients from its targets based on received messages using a programmer-

defined function and sends received messages to those chosen targets.

sequencer

A sequencer sends received messages to a list of participants in a sequential order. In other words, it sends

the received message to the first participant and waits for a response; after receiving a response, it sends the

response to the second participant, and so on, until all participants have responded. Finally, the response

from the last participant is sent to the targets.

aggregator

An aggregator computes an aggregation result from received messages so far when certain conditions are met,

and sends the result to its targets.

20

3.2.4 Channel – The Primitive Communication

The primitive communication is a channel. Figure 3.4 shows a channel, which simply connects one input

outlet (the white circle) to one output outlet (the black circle). It enables sending of asynchronous messages

from a process connecting to the input outlet to another process connecting to the output outlet.

Figure 3.4: Channel

3.3 Composition

We define complex communications compositionally. In other words, what we call a complex communications

is defined in terms of simpler communications using three composition rules described below. A complex

communication is anything that can be constructed by beginning with channels and repeatedly applying

these three rules: input merge, output merge, and output-input merge.

3.3.1 Composition Rules

This section describes the three composition rules: input merge, output merge, and output-input merge.

Input Merge

As illustrated in Figure 3.5, an input merge composition merges a number of communications at their input

outlets. The number of communications being merged is not decided a priori, and is determined dynamically

by the number of relevant recipients who fit some pattern [3]. The purpose is to enable a single sender to send

messages to a number of recipients. A computation connecting to the input end of this communication can

send messages, each of which is then delivered to each of the computations connected to the output outlets.

The input outlet at the merging point has a behavior, which enables a message to be processed before sending

forward.

Figure 3.5: Composition: Input Merge

At the first glimpse, one may think this composition is the same as broadcast. They are the same when the

input outlet just simply forwards received messages to output outlets. However, it can be significantly different

21

from broadcast, because the input outlet in this composition has a behavior, which enables the communication

to realize functions such as counting, aggregating, scattering (e.g., MPI scatter), etc. Furthermore, a message

at the input outlet may be sent to some targets but not to others, which we call selective sending, which is

similar to Akka routing [75].

Output Merge

Figure 3.6 shows an output merge composition, which merges a number of communications at their output

outlets. The purpose is to enable a single recipient to receive the messages sent by a number of non-

deterministically determined senders in some order. The number of communications merging their output

outlets is not known a priori.

Figure 3.6: Composition: Output Merge

At the output end, the messages can be received by a computation and processed as required by the

computation. Alternatively, they can be somehow aggregated. In its simplest form, the aggregation function

simply spits out each message received in its original form. In more interesting forms, it can process received

messages in permitted ways, both to create aggregate messages to be forwarded, and to make decisions about

whether and when to forward aggregates. For example, the aggregation could impose constraints on delivery

of messages from different sources in a way similar to how the channels in Reo do, except that the number

of computations participating in a communication do not have to be known a priori. Also, the protocols

can be finer-grained and rely on decisions possible only at run-time. For example, a protocol could wait for

a majority of voting computations to vote “yes” or “no,” counting each vote equally, or weigh the votes of

different voters differently.

Output-input Merge

Output-input merge connects output outlets to input outlets based on bindings, each of which pairs one

output outlet of one communication with one input outlet of another communication. Figure 3.7 shows

merging one output outlet with one input outlet. The doubled arrow is the composition glue which shows

the connection and message flow. Notice that unlike input merge and output merge, the types of two merged

outlets are different: one is output and another input. Moreover, the message flow is from the output outlet

to the input outlet, but not vice versa.

22

Figure 3.7: Composition: Output-input Merge

3.3.2 Examples

More complex communications can be composed from simpler communications by using the three rules

repeatedly. This section gives three examples.

Example 1 Figure 3.8 shows an example using all three composition rules to compose six channels. C1,

C2, and C3 are composed by merging their output outlets; C4, C5, and C6 are composed by merging their

input outlets; these two composed communications are composed by applying the output-input merge rule.

The final communication has three input outlets and three output outlets.

Figure 3.8: Example 1: Communication Composition

Example 2 Figure 3.9 shows an example of composing two communications – C1 and C2 – using the

output-input merge rule. Each communication has three input outlets and three output outlets. The two

smaller solid rectangles represent the two communications to be composed and the dashed rectangle represents

the composition glue which composes them. The particular composition happens by connecting two of the

output outlets of C1 to two input outlets of C2, and one output outlet of C2 to one input outlet of C1. The

composed communication is represented by the biggest rectangle. To an external observer, the composition

glue is invisible, as are the six outlets it connects. In other words, an external observer only sees three input

outlets and three output outlets of the composed communication.

Figure 3.9: Example 2: Communication Composition

Example 3 Consider a contractor attempts to get the lowest price on a product from multiple vendors.

Suppose the contractor divides those providers into two disjunct sets and sends two negotiators to negotiate

23

with vendors, one for each set. The reason for this arrangement may be the negotiation is too time-consuming

to be completed by one negotiator, or location concerns, e.g., each negotiator is geographically close to their

assigned set of vendors. Under this circumstance, the contractor creates two communications, each of which is

a negotiator, and composes them by having them interact with each other. Consequently, the two negotiators

can exchange the lowest price they obtained so far and then use this information to obtain a better offer from

their assigned set of vendors. Figure 3.10 shows the relationship between these two negotiators. The visible

outlets are used to interact with vendors.

Figure 3.10: Example 3: Contract Negotiators

3.3.3 General Case

We have seen a number of composed communications. This section presents the general case of a composed

communication shown in Figure 3.11. In the figure, we use vertical lines to represent compositions (using

notation adopted from process calculi). C1 and C2 are composed first, then the composed communication is

composed with another communication, and so on. An external observer can only see the input outlets and

the output outlets of the composed communication.

Figure 3.11: Composition: General Case

3.4 Summary

This chapter gives the definition for communications from a different angle, and presents three rules for

constructing complex communications by composing simpler communications. A communication consists

of a set of active objects, which are outlets and handlers. Through outlets, a communication interacts

with computations by receiving messages from computations via its input outlets and by sending messages

to computations via its output outlets. The received messages are handled by handlers, which sends the

processed messages to output outlets.

24

A communication can be as simple as a channel, which transfers asynchronous messages from a process

connecting to its input outlet to another process connecting to its output outlet. Because of the composition

rules, we can build more complex communications starting from channels.

Not only a communication can be used as communication medium by a number of computations, but it

can also be used by a single computation. At the sender side, a communication can be used as a worker,

which applies rules to outgoing messages. Figure 3.12 shows this case. For instance, workers can delay,

encrypt, decrypt, or type check messages sent by the sender.

Figure 3.12: Communication as a Worker

At the recipient side, a communication can be used as a dedicated concierge applying rules to incoming

messages. Figure 3.13 illustrates this case. For example, a concierge can be used as a filter and only certain

types of messages will be delivered to the recipient.

Figure 3.13: Communication as a Concierge

Using a communication as a concierge is not uncommon. For example, in Gmail, priority inbox [35] is used

to prioritize incoming messages for email recipients. Selectors [41] is another example, in which a computation

has multiple guarded mailboxes and the next message to be picked up for processing is dependent on the

boolean guards on mailboxes. In the domain of Email systems, the concept of using a communication to

enforce the recipients’ receiving policies has been used for curbing spam [42].

25

Chapter 4

interActors

This chapter introduces interActors – a model for separating communication concerns of processes from

their functional concerns. interActors are defined in terms of the actor model of concurrency and extend the

actor model with support for complex communications between actors. I first introduce the basic concepts

of interActors in Section 4.1. Section 4.2 introduces the actor model, the foundation underlying interActors.

Section 4.3 presents operational semantics for interActors. Compositional semantics are presented in Section

4.4. Section 4.5 discusses the observational equivalence of communications and Section 4.6 concludes the

chapter with discussions of some open issues.

4.1 Basic Concepts

interActors are defined in terms of the Actor model of concurrency [2, 4], and extend Actors with support

for complex communications. In interActors, concurrent computations are represented by actors. A runtime

system implementing interActors includes two layers: the Actor Layer and the Communication Layer (see

Figure 4.1). In the figure, ovals represent actors; the rectangle is a communication; the white circle is the input

outlet of the communication; the black circle is the output outlet of the communication. Communications

reside in the Communication Layer and the actors carrying out the computations reside in the Actor Layer.

Figure 4.1: Two-layer Runtime System

An actor in the Actor Layer interacts with a communication only by sending messages to input outlets

of the communication and receiving messages from the communication’s output outlets. Handlers of a

26

communication are the driving force under the hood, and they can create more handlers, create more outlets,

or change behaviors of outlets. Actors are oblivious to handlers and output outlets. In other words, actors

only need to know the names of input outlets to participate in communications. Furthermore, because

handlers can send messages to outlets, handlers need to know the names of outlets beforehand in order to

send them messages.

4.2 Actors

Actors is a language-independent mathematical model for concurrent computing. Actors extend the concept

of objects to concurrent computations. An actor (see Figure 4.2) is an active object encapsulating a thread of

execution, a mailbox, a set of methods, and the object’s states. An actor interacts with other actors through

point-to-point asynchronous message passing.

Each actor has a globally unique name using which other actors communicate with it. In response to an

incoming message, an actor may carry out one of three actor primitives:

• send(a,v) sends a message v to an actor named a asynchronously.

• create(b, v) creates a new actor with behavior b and initial parameter v, and returns a unique

actor name of the newly created actor.

• become(b) creates an anonymous actor to complete the rest of the current computation, changes

behavior of the actor executing become(b) to be b and frees that actor to accept new messages.

An actor system evolves as actors interact with each other by sending messages. The actor model guaran-

tees weak-fairness. That is, messages are guaranteed to be eventually delivered to their destinations. Message

delivery order, however, is not guaranteed. Messages delivered but not processed by the receiver are buffered

in the mailbox of the receiver. Message processing is atomic, which means that once an actor starts processing

a message, it continues non-preemptively until it is completed.

4.2.1 Syntax and Semantics

Instantaneous snapshots of actor systems are called actor configurations. Actor semantics are defined using a

transition relation on configurations. The notion of open systems is captured by defining a dynamic interface

for a configuration, i.e., by explicitly representing a set of receptionists, actors which may receive messages

from actors outside the configuration and a set of external actors outside the configuration which may receive

messages from actors inside the configuration.

An actor configuration with actor map α, a finite set of undelivered messages µ, receptionists ρ, and

external actors χ, is written as

〈α | µ〉ρχ

27

Figure 4.2: An actor may be viewd as an object augmented with a thread of control and a mailbox.
Actors interact with each other through asynchronous messages and may create new actors.

where ρ and χ are finite sets of actor addresses, α maps a finite set of actor addresses to their behaviors, µ is

a finite multi-set of undelivered messages. A message m which has two parts a target a and message content

v, is written as a / v. If A = Dom(α) (domain of α), then the following properties must hold:

(0) ρ ⊆ A and A ∩ χ = φ,

(1) if a ∈ A, then FV (α(a)) ⊆ A ∪ χ, where FV (α(a)) represents the free variables of α(a); and if v0 / v1

is a message with content v1 to actor address v0, then FV (vi) ⊆ A ∪ χ for i < 2.

An actor a can be in one of two states: idle and busy.

• idle represented by (b)a, which means that the actor is ready to accept a message, where b is its behavior

• busy represented by [app(b,m)]a, which means that the actor is processing a message by applying its

behavior b to the message m.

Transition Rules

An actor expression, e, is either a value v, or otherwise it can be uniquely decomposed into a reduction

context, R, filled with a redex, r, denoted as e = R[r]. A redex represents the next sub-expression to evaluate

in a standard left-first, call-by-value evaluation strategy.

28

In a reduction context R, the evaluation of the current expression occurs, and app is a function which,

when evaluated, applies the received message to the behavior of the receiving actor. The transition rules on

actor configurations are defined as follows.

The following rule says that if expression e reduces to expression e′ in the context of Dom(α) ∪ {a} ∪ χ,

then an actor a with behavior e will change its behavior to e′:

e
λ→Dom(α)∪{a}∪χ e

′ ⇒ 〈α, [e]a | µ〉ρχ → 〈α, [e′]a | µ〉ρχ

The following rule defines the asynchronous semantics of message send, in which an actor a sends a

message m = a′ / msg to another actor named a′:

〈α, [RJsend(m)K]a | µ〉
ρ
χ → 〈α, [RJnilK]a | µ

′〉ρχ

where µ′ = µ ∪ {m} and m = a′ / msg, a′ is an actor and msg is the content of the sending message.

The following rule shows how an actor a can receive a message when it is idle. As a result, the actor

applies the received message to its current behavior:

〈α, (b)a | µ, a / msg〉ρχ → 〈α, [app(b,msg)]a | µ〉ρχ

The following rule shows how a new actor with fresh name a′ is created and the new actor’s name a′ is

returned to the creator a:

〈α, [RJnewactor(b)K]a | µ〉
ρ
χ → 〈α, [RJa′K]a, (b)a′ | µ〉

ρ
χ

where a′ is the fresh name of the newly created actor.

Composition of Actor Configuration

Actor configurations can be composed to form new actor configurations. Two actor configurations 〈α0 | µ0〉ρ0χ0

and 〈α1 | µ1〉ρ1χ1
are composable if Dom(α0) ∩Dom(α1) = φ, χ0 ∩Dom(α1) ⊆ ρ1, and χ1 ∩Dom(α0) ⊆ ρ0.

The new composed configuration can be written as:

〈α0 ∪ α1 | µ0 ∪ µ1〉ρ0∪ρ1(χ0∪χ1)−(ρ0∪ρ1)

This composition operation is commutative, associative, and has the empty configuration as unit, which are

discussed in [4].

4.3 interActors

In interActors, we use actors to model outlets and handlers. Furthermore, we need a binding to indicate

which outlet is known to which handler so that handlers can send messages to outlets or change the behavior

of outlets. Hence,

Definition (Communication):

A communication denoted as C can be written as (H : O : P), where

29

• H is a set of handlers which are system actors and drive the communication forward.

• O is a set of outlets which are system actors including input outlets and output outlets.

• P is a set of mappings from handlers to outlets indicating which handler have names of which outlets.

Each mapping has the form of (h, o), where h is the name of a handler and o is the name of an outlet.

Definition (interActor Configuration):

An instantaneous snapshot of a system of interActors is called an interActor configuration. An interActor

configuration extends an actor configuration with a finite set of communications, a finite set of messages

in the communication layer, and a finite set of mappings from application actors to input outlets. Because

interActors do not alter how an actor configuration interacts with external actors, we do no show receptionists

and external actors. Therefore, an interActors configuration can be represented by a 5-tuple:

〈C | M | B | α | µ〉

where C is a finite set of communications. M is a finite set of messages in the communication layer. B is a

set of mappings from application actors to input outlets, and each mapping indicates which application actor

has the name of which input outlet. Each mapping has the form of (a, o) and a is the name of an application

actor and o is the name of an outlet. α and µ are similar to identical symbols in an actor configuration.

α maps actor addresses to behaviors, and µ is a finite set of undelivered messages to and from application

actors.

Next, I present transition rules of interActors.

Launching a communication

Once an application actor has a communication, comm, which has been created by itself or received from

another actor, it can launch it by calling launch(comm). As a consequence, in the communication layer, a

communication is created along with its outlets and handlers. Application actors are given the names of the

input outlets of the communication. The following transition describes this operation.

〈C | M | B | α, [RJlaunch(comm)K]a | µ〉 → 〈C, (H : O : P) | M | B | α, [RJnilK]a | µ
′〉

where a is the application actor launching the communication, and µ′ = µ∪m, where m is a set of messages

notifying application actors the names of the input outlets.

Figure 4.3 illustrates this transition. In the figure, an actor represented by the oval calls launch to

launch a communication, which leads to a new communication is created in the communication layer.

Actor sending a message to an outlet

An actor a sends a message to an outlet o using send. More specifically, an actor sends a message to an

input outlet, because, actors only know input outlets but are oblivious to output outlets. The result of this

30

Figure 4.3: Launch a Communication

operation is an actor message targeting to o is created in the actor layer. The transition is depicted as follow:

〈C | M | B | α, [RJsend(m)K]a | µ〉 → 〈C | M | B | α, [RJnilK]a | µ
′〉

where µ′ = µ ∪ {m}, and m = o / msg and o is an input outlet.

Actor receiving outlet name

To participate in a communication, an actor has to send messages to the communication’s input outlet. Actor

a receives a message which has the name of an outlet o so that it can use the received outlet to interact with

the communication. Again, the received outlet is the type of input, because actors do not use output outlets

to send messages. This transition is written as

〈C | M | B | α, (b)a | µ, a / o〉 → 〈C | M | B′ | α, [app(b, o)]a | µ〉

where o is an outlet, and B′ = B ∪ {(a, o)}. app is a function which applies the received message to the

behavior of the actor. As a result of this operation, a new mapping from actor a to outlet o is added into B,

and a’s behavior b is applied to the incoming outlet name o to record it.

Figure 4.4 illustrates this case. In the figure, the line with the arrow from a to o represents the mapping

from a to o. Note that the received outlet name can be from either another actor or a communication.

Figure 4.4: An Actor Receives an Outlet

31

Outlet sending message

An input outlet can sends a message to a handler or an output outlet, and an output outlet can send a

message to an application actor. In the former case, a message is created in the communication layer; in the

latter case, a message is generated in the actor layer. This scenario is depicted in the following:

〈C, (H : O, [RJsend(m)K]o : P) | M | B | α | µ〉 → 〈C, (H : O, [RJnilK]o : P) | M′ | B | α | µ′〉

where o is the outlet. m = target / msg and target is a handler, an output outlet, or an application actor.

M′ =M∪ {m} and µ′ = µ if o is an input outlet, and M′ =M and µ′ = µ ∪ {m} if o is an output outlet.

Outlet receiving message

An input outlet can receive messages from application actors, and both input outlets and output outlets can

receive messages from handlers. The receiving outlet applies the received message to its current behavior,

which is depicted as follow:

〈C, (H : O, (b)o : P) | M | B | α | µ〉 → 〈C, (H : O, [app(b,msg)]o : P) | M′ | B | α | µ′〉

where o is the outlet with behavior b. The message is removed from M or µ depending on whether it was

from a handler or an application actor, respectively. M′ = M and µ′ = µ − {o / msg} if the sender is an

actor, and M′ = M− {o / msg} and µ′ = µ if the sender is a handler. app applies o’s behavior b to the

message.

Changing outlet’s behavior As a special case of this rule, if msg is the type of behv(b′), which means a

handler is trying to change the behavior of the outlet to b′, applying b to it changes the behavior of o to b′:

[app(b,msg)]o = (b′)o. These special messages can only be sent by handlers, and application actors have no

such privilege.

Handler sending message

A handler sends a message to another handler or to an outlet using send. As a result, a new message is

created in the communication layer.

〈C, (H, [RJsend(m)K]h : O : P) | M | B | α | µ〉 → 〈C, (H : [RJnilK]h : O : P) | M′ | B | α | µ〉

where h is the handler sending a message,M′ =M∪{m}, and m = target /msg and target is a handler or

an outlet in the same communication.

Handler receiving message

A handler can receive a message from an outlet or another handler. As a consequence of receiving a message,

the handler applies it to its current behavior. Furthermore, if the message contains a name of an outlet not

32

known to the handler, a new mapping from the handler to the outlet is added to P . The following describes

this case.

〈C, (H, (b)h : O : P) | M, h / msg | B | α | µ〉 → 〈C, (H, [app(b,msg)]h : O : P ′) | M | B | α | µ〉

where h is a handler with behavior b. P ′ = P ∪{(h, outlet name(msg))} if msg contains a name of an outlet

which is unknown to the handler, where outlet name is a function which retrieves an outlet name from msg;

P ′ = P otherwise.

Handler creating outlet

A handler can create a new outlet through invoking new outlet. At creation, only the creator knows the

name of the created outlet. Subsequently, the creator can send the newly created outlet’s name to other

handlers, or application actors if the created outlet is the type of input. This operation is shown in the

following:

〈C, (H, [RJnew outlet(b)K]h : O : P)c | M | B | α | µ〉

→ 〈C, (H, [RJoK]h : O, (b)o : P ′)c | M | B | α | µ〉

where h is the creating handler, b is the behavior of the newly created outlet, o is fresh and is the name for

the newly created outlet, and P ′ = P ∪ {(h, o)} indicating h’s knowledge of o.

Figure 4.5 illustrates this case. The line from h to o indicates h’s knowledge of o.

Figure 4.5: An Handler Creates an Outlet

Handler creating another handler

A handler can create a new handler through invoking new handler. The newly created handler is only

known to the creator, which may share the name to other handlers and outlets. This operation is described

below:

〈C, (H, [RJnew handler(b)K]h : O : P)c | M | B | α | µ〉

→ 〈C, (H, [RJh′K]h, (b)h′ : O : P)c | M | B | α | µ〉

where h is the creating handler, b is the behavior of the newly created handler, and h′ is fresh and is the

name for the new handler. h′ is known to h – the creator.

Figure 4.6 illustrates this case. The line from h to h′ indicates h’s knowledge of the newly created handler

h′.

33

Figure 4.6: An Handler Creates another Handler

4.4 Compositional Semantics

This section presents the communication compositional semantics. We denote a communication C as (H :

O : P) where H is a set of handlers, O is a set of outlets, and P is a set of mappings from handlers to outlets,

each of which has the form of (h, o). A handler with name h, behavior b, target t is represented by (b, t)h;

an outlet with name o, behavior b, target t is represented by (b, t)o.

Input Merge

To merge a number of communications at their input ends, we receive as parameters a set of input outlets to

be merged and a behavior. The input outlets are transformed into handlers which retain the old behaviors

and targets of the outlets. Then we create a new handler with the provided behavior and a new input outlet;

the input outlet becomes the input outlet of the composed communication, and forwards whatever it receives

to the handler, and the handler’s targets are the new handlers transformed from the composed input outlets.

The input merge of n (n > 1) communications can be described as follow:

|
S,b

n
i=1(Hi : Oi : Pi)⇒

(n⋃
i=1

Hi ∪ (b, T)h ∪ T : (

n⋃
i=1

Oi − S) ∪ {(forwarder, h)o′} : (

n⋃
i=1

Pi − PM) ∪ PN}
)

where n > 1, S is a set of input outlets to be composed, b is the provided behavior, (b, T)h is the newly

created handler with behavior b and targeting T , where T =
⋃
o∈S
{tr((bo, to)o)} is a set of handlers transformed

from outlets in S using a transform function tr, which retains the original outlet’s behavior and its targets;

(forwarder, h)o′ is the newly created input outlet having behavior forwarder and targeting h, the newly

created handler; The map tracking handlers’ knowledge of outlets is obtained by including the mappings of

the composing communications

n⋃
i=1

Pi, removing the mappings involving transformed outlets PM , and adding

the newly created mapping PN .

Figure 4.7 illustrates this with an example where three communications, C1, C2, and C3, are to be

composed using the set {in1, in2, in3} and behavior b. A new input outlet is created which targets the newly

created handler represented as the gray oval, which has the behavior b. The composed communication has

one input outlet and three output outlets, which are the only outlets visible to external observers. The

merged input outlets are transformed into handlers (the three white ovals) which have the same behaviors

and the same targets as the original input outlets.

34

Figure 4.7: Input Merge Composition

Note that input merge also allows the merged input outlets from a same communication. Figure 4.8 shows

an example. In this figure, two communication C1 and C2 are composed. The set of merged input outlets is

{in1, in2, in3}. Among them, the first two outlets are from C1 and the third outlet is from C2. The supplied

behavior is b. in5 is the input outlet created for this composition.

Figure 4.8: Input Merge Composition – Two Outlets from Same Communication

Output Merge

To compose a number of communications by merging their output outlets, we receive as parameters the set

of output outlets to be merged, one behavior, and one target. We create a new output outlet with forwarder

behavior targeting the provided target, create a handler with the provided behavior targeting the newly

created output outlet, and finally transform the output outlets to be merged into handlers which have the

newly created handler as their target.

This output merge of n (n > 1) communications can be described as follow:

|
S,b,t

n
i=1(Hi : Oi : Pi)⇒

(n⋃
i=1

Hi ∪ (b, o′)h ∪ T : (

n⋃
i=1

Oi − S) ∪ {(forwarder, t)o′} : (

n⋃
i=1

Pi − PM) ∪ PN
)

where n > 1, S is a set of output outlets to be composed, b is the provided behavior, (forwarder, t)o′ is the

newly created output outlet with behavior forwarder targeting the provided target t, and (b, o′)h represents a

handler named h with the behavior b targeting o′; T =
⋃
o∈S
{tr((bo, h)o)} is a set of handlers transformed from

S using a transform function tr and each handler retains the same behavior and they all have their target

to the newly created handler h. The map tracking handlers’ knowledge of outlets is obtained by including

35

the mappings of the composing communications

n⋃
i=1

Pi, removing the mappings involving transformed outlets

PM , and adding the newly created mapping PN .

This is illustrated in Figure 4.9, in which C1, C2, and C3 are merged under the set {out1, out2, out3},

behavior b, and targets t. Note that t is a list of recipients. The gray oval represents the newly created

handler having behavior b, which sends its processed messages to the newly created output outlet, which

targets t. The three black ovals are handlers transformed from the merged output outlets. The composed

communication has three input outlets and one output outlet, which are the only outlets visible to external

observers.

Figure 4.9: Output Merge Composition

Like input merge, output merge does not rule out the case that the merged output outlets can be from

a same communication. Figure 4.10 shows an example. In this figure, the set of merged output outlets are

out2, out3, and out4, and the first outlet is from C1 and the last two outlets are from C2. The supplied

behavior is b and the newly created output outlet out5 has targets to t.

Figure 4.10: Output Merge Composition – Outlets from a Same Communication

Output-Input Merge

Communications can be composed using output-input merge, which connects output outlets of one communi-

cation to input outlets of another communication. Therefore, the message flow is from the first communication

to the second communication. To compose a number of communications by connecting output outlets to in-

put outlets, bindings must be provided, each of which has the form (out, in, b), where out is the name of an

output outlet, in is the name of an input outlet, and b is the behavior for the newly created handler which

36

is the bridge between out and in. The output-input merge composition of n (n > 1) communications can be

described as follow.

|
B

n
i=1(Hi : Oi : Pi)⇒

((n⋃
i=1

Hi

)
∪

m⋃
j=1

{(bj , inj)hj} ∪
m⋃
j=1

{tr((boj , hj)outj)} ∪
m⋃
j=1

{tr((bij , tij)inj)} :

(n⋃
i=1

Oi)− (

m⋃
j=1

{(boj , toj)outj})− (

m⋃
j=1

{(bij , tij)inj}
)

:
(n⋃
i=1

Pi − PM
))

where n > 1; B is a provided set of bindings, with its jth entry has the form of ((boj , toj)outj , (bij , tij)inj
, bj),

which is a triple identifying an output outlet outj , which has the behavior of boj and the target of toj , an

input outlet inj , which has the behavior of bij and the target of tij , and a behavior bj , where 1 ≤ j ≤ m and

m is the number of entries in B. To compose the communications, for each binding triple (outj , inj , bj) in B,

both outlets are transformed into handlers, and a new handler is created to connect them. tr((boj , hj)outj)

is the handler transformed from the output outlet (boj , toj)outj which has the behavior of boj but the target

is changed from toj to the newly created handler hj ; tr((bij , tij)inj
) is the handler transformed from the

input outlet (bij , tij)inj
which has the behavior of bij and the original target of tij . (bj , inj)hj

is the handler,

which connects the two transformed handlers, with the provided behavior bj targeting inj . The map tracking

handlers’ knowledge about outlets is obtained by including the mappings of the composed communications
n⋃
i=1

Pi and removing the mappings involving transformed outlets PM . No new handler to outlet mappings

are created in this composition.

Figure 4.11 illustrates this using the example of two communications, C1 and C2, to be composed using

the binding set {(out2, in3, b1), (out4, in2, b2)}. C1 has two input outlets in1 and in2 and two output outlets

out1 and out2, and C2 has two input outlets in3 and in4 and two output outlets out3 and out4. The output-

input merge composition creates two handlers represented by the two gray ovals, which have behaviors b1

and b2, respectively. The white ovals are handlers transformed from the merged input outlets and the black

ovals are handlers transformed from the merged output outlets. To external observers, only the input outlet

in1 and the output outlet out1 from C1 and the input outlet in4 and the output outlet out3 from C2 are

visible, and those merged outlets are hidden from them.

Figure 4.11: Output Input Merge Composition

output-input merge does not prevent multiple different output outlets are merged with a same input

outlet. Figure 4.12 shows an example. This figure has one more binding (out1, in3, b3) which merges the

37

output outlet out1 of C1 with the input outlet in3 of C2. In this case, both output outlets of C1 send messages

to in3. Because the behavior of in3 does not change, the two streams from out1 and out2 are simply merged

into one stream at in3.

Figure 4.12: Output-input Merge Composition – Multiple Output Outlets to One Input Outlet

Likewise, output-input merge does not prevent one output outlet is merged with multiple input outlets.

Figure 4.13 illustrates this case. In this figure, binding (out2, in4, b3) is added. In this case, messages received

at out2 will be sent to in3 and in4 at the same time.

Figure 4.13: Output-input Merge Composition – One Output Outlet to Multiple Input Outlets

4.5 Equivalence of Communication Configurations

Now we introduce the notion of observational equivalence of communication configurations. Because a com-

munication contains handlers and outlets – which are actors – and messages transferred to outlets and

handlers, it is essentially an actor system, in which the input outlets known to application actors are recep-

tionists, and the application actors known to the output outlets are external actors.

Definition (Communication Configuration):

A communication configuration can be written as:

〈Γ | ∆〉io

where Γ maps outlets’ and handlers’ addresses to behaviors, ∆ is a finite set of undelivered messages to

the communication’s outlets and handlers, i is a set of input outlets known to applications actors, and o is a

set of application actors known to the output outlets of the communication.

Agha et al. discussed the equivalence of actor configurations in [4]. Because communication configu-

rations are also actor configurations, we can use their approach to show the equivalence of communication

38

configurations. In this thesis, I use ideas similar to those presented in their paper, and propose an approach

specifically for communication configurations.

To check whether two communication configurations are observationally equivalent, we need to put them

into an “observing context.” An observing context is some complete program with a hole, such that all of

the free variables in an expression being observed are captured when the expression is placed in the hole.

We define observing configurations for a communication configuration as configurations of the system of

application actors.

Definition (Observing Configurations):

The observing configurations for a communication configuration, Ω = 〈Γ | ∆〉io, are actor configurations of

the form κ = 〈α | µ〉oi . For these actor configurations, receptionists are o and external actors are i. κ is

composable with Ω.

Two communication configurations are considered to be equivalent if they behave the same way when

they are placed in any observing configuration. Specifically, to show that two communications Ω1 and Ω2 are

observationally equivalent, we use an arbitrary actor configuration κ as an observing configuration. From

κ, an idealized observer observes Ω1 and Ω2. If, from any observing configuration, the observer cannot

distinguish Ω1 from Ω2, we say that the two communications are observationally equivalent. To achieve this

goal, we introduce an observer primitive for observing configurations, event, and observe whether event

occurs in any given expression.

Informally, given any arbitrary observing configuration, an idealized observer separately observes two

communication configurations. If for both communication configurations, the same event is always observed

in the given observing configuration, we say that the two communication configurations are observationally

equivalent. Formally,

Definition (Ω0 ≡ Ω1):

if Ω0 = 〈Γ0 | ∆0〉i0o0 ≡ Ω1 = 〈Γ1 | ∆1〉i1o1 , the following three properties must hold

(1) |i0| = |i1|, i.e., they have the same number of receptionists, i.e., the input outlets known to application

actors,

(2) there is a one-to-one mapping between i0 and i1; i.e., for each input outlet in i0, there is exactly one

corresponding input outlet in i1, and vice versa,

(3) for any expression in any observing configuration, if we replace the names of input outlets in i0 with

the corresponding names of input outlets in i1, the same event will be observed, and vice versa.

4.5.1 Properties

This section studies properties of equivalence. In the following, we use Ω0, Ω1, and Ω2 to represent 〈Γ0 | ∆0〉i0o0 ,

〈Γ1 | ∆1〉i1o1 , and 〈Γ2 | ∆2〉i2o2 , respectively.

39

Property (Transitive):

If Ω0 ≡ Ω1 and Ω1 ≡ Ω2, then Ω0 ≡ Ω2.

Proof. By definition of equivalence.

Property (Commutative):

Ω0 | Ω1 ≡ Ω1 | Ω0

Proof. By definition of the composition operator.

Property (Associative):

Ω0 | Ω1 | Ω2 ≡ (Ω0 | Ω1) | Ω2 ≡ Ω0 | (Ω1 | Ω2)

Proof. First, by definition of the composition operator, which is left-associative, Ω0 | Ω1 | Ω2 ≡ (Ω0 | Ω1) | Ω2.

Second, we prove Ω0 | Ω1 | Ω2 ≡ Ω0 | (Ω1 | Ω2) as follows using commutative property:

Ω0 | Ω1 | Ω2 ≡ Ω2 | Ω0 | Ω1

≡ Ω1 | Ω2 | Ω0

≡ (Ω1 | Ω2) | Ω0

≡ Ω0 | (Ω1 | Ω2)

Third, by transitive property, because Ω0 | Ω1 | Ω2 ≡ (Ω0 | Ω1) | Ω2 and Ω0 | Ω1 | Ω2 ≡ Ω0 | (Ω1 | Ω2),

(Ω0 | Ω1) | Ω2 ≡ Ω0 | (Ω1 | Ω2)

Definition (Composition Operator |):

Composition operator | represents one of the composition rules defined in Section 4.4 and it is left-associative

and commutative. Ω0 | Ω1 means that the configurations Ω0 and Ω1 are composed using input merge, output

merge, or input-output merge.

Now, we look at a number of properties with respect to the equivalence of communication composition.

Property (Composition Equivalence):

If Ω0 ≡ Ω1, then Ω0 | Ω2 ≡ Ω1 | Ω2.

Proof. We need to show that this property holds for all three composition rules defined in Section 4.4.

Therefore, there are three cases. We assume that for each composition Ω0 | Ω2 and Ω1 | Ω2, they use the

same parameters for each composition rule.

• Case 1 (input merge): Suppose for both Ω0 | Ω2 and Ω1 | Ω2, the set of input outlets of Ω2 to be merged

is s2; for Ω0 | Ω2, the set of input outlets of Ω0 to be merged is s0; for Ω1 | Ω2, the set of input outlets of

Ω1 to be merged is s1; there is one-to-one mapping between s0 and s1. For Ω0 | Ω2, the newly created

input outlet is o′, then, according to the input-merge rule, the set of input outlets of the composed

configuration is S0 = ((i0∪i2)−(s0∪s2))∪{o′}. Similarly, for Ω1 | Ω2, if the newly created input outlet

40

is o′′, then, the set of input outlets of the composed configuration is S1 = ((i0 ∪ ı2)− (s1 ∪ s2)) ∪ {o′′}.

Because there is a one-to-one mapping between s0 and s1, |s0 ∪ s2| = |s1 ∪ s2|, therefore, |S0| = |S1|,

satisfying condition 1 in the equivalence definition. By the same reason, we can easily establish one-to-

one mapping between S0 and S1, meeting condition 2. To show condition 3 is also satisfied, suppose

the newly created handler is h0 for the first composition and h1 for the second composition. Because

h0 and h1 connect to s0 ∪ s1 and s0 ∪ s2, respectively and they have the same behavior, if one event is

observed in Ω0 | Ω2, the same event will be observed in Ω1 | Ω2. Therefore, Ω0 | Ω2 ≡ Ω1 | Ω2.

• Case 2 (output merge): Similar analysis applies to this case.

• Case 3 (input-output merge): Similar analysis applies to this case for condition 1 and condition 2.

For condition 3, instead of creating one handler, multiple handlers may be created, each for each

binding. Because for each newly created handler in the first composition, the corresponding newly

created handler in the second composition has the same behavior, if one event is observed in the

first composed configuration, the same event will be observed in the second composed configuration.

Therefore, Ω0 | Ω2 ≡ Ω1 | Ω2.

4.6 Discussion

Openness We can apply the notion of open systems in the actor model to the interActors model. Openness

in the interActors model is supported as follows:

• New input outlets can be added dynamically by creating new input outlets.

• New actor names can be known to output outlets by sending those actor names to them by input outlets

or handlers.

• The targets of outlets can be changed.

• The behaviors of outlets can be changed at run-time by handlers.

Garbage Collection Once launched, like actors, a communication is either busy or idle. Some idle com-

munications may not be in use anymore. To prevent the run-time system from being filled with these unused

communications, garbage collection can be triggered under certain circumstances. For example, a communi-

cation can be garbage collected if it terminates. To determine whether a communication is terminated, the

following two conditions must be satisfied:

1. All handlers are idle and there are no messages in the queues of outlets and handlers of the communi-

cation.

2. No application actors have the name of the input outlets of the communication.

41

Communication Types Because it is simply data flowing between composed communications, interActors

do not carry out type-checking when composing communications. If type-checking were required, it could be

realized in the behaviors of outlets or handlers.

Privacy and Security The main focus of interActors is separation of communication concerns of appli-

cations from their functional concerns. Privacy and security concerns are not directly addressed.

Although this thesis does not address privacy concerns, the approach may be used to enhance privacy and

security. For example, public-key encryption can be encapsulated in a communication. Computations’ public

keys can be passed to the communication at the time of instantiating the communication. The implementation

of encryption and decryption behaviors required for such a communication is described in Section 5.2.2.

42

Chapter 5

Implementation

I have implemented a proof-of-concept prototype which can be used to program new types of communica-

tions. Our implementation is in Scala using the Akka actor library [75]. As I mentioned in earlier chapters,

a communication consists of outlets and handlers which are active objects. In our implementation, we treat

a communication as an object that holds references to outlets and handlers which are actors. Furthermore,

outlets and handlers have behaviors.

The rest of this chapter is organized as follows: Section 5.1 presents the architecture of an interActors

system. Section 5.2 describes the classes implemented for interActors: CSL, Behavior, Handler, Outlet,

and Communication. Section 5.3 gives a number of communication examples. Section 5.4 introduces

communication-oriented programming, that is, how to use communications in an application. The imple-

mentation of communication composition is discussed in Section 5.5. Finally, Section 5.6 summarizes this

chapter and reveals a possible optimization for this prototype.

5.1 System Architecture

An interActors system is described in Figure 5.1. The system include three layers: application layer, com-

munication layer, and system layer. The application layer is where the application actors reside, the commu-

nication layer deals with complex communications, and the system layer provides system-level services. In

the figure, only message transport service is presented in the system layer because our focus is communica-

tion. Application actors can interact with each other through either message transport service offered by the

system or through the communication layer. More precisely, for simple point-to-point messages, application

actors use system-provided message services, and for more complex communication, application actors have

a choice to use communications – a higher-level abstraction.

5.2 Classes

A runtime interActors system is made up of a number of classes: CSL, Behavior, Handler, Outlet,

and Communication. The relationship between these classes is illustrated in Figure 5.2. CSL implements

methods which are used in defining behaviors or communications. Actor is Akka Actor, which is an

interface. Behavior has all methods defined in CSL. Handler and Outlet realize the Akka Actor.

43

Figure 5.1: System Architecture

Communication inherits methods from CSL. Furthermore, from the class diagram, we can also see handlers

and outlets have behaviors and communications have outlets and handlers.

Figure 5.2: interActors Class Diagram

5.2.1 CSL

Class CSL, which is the superclass of Behavior and Communication, implements methods that can be

used in these two classes. Because the code is too long, I list it in Section A.1 of Appendix A. The class

is named after Communication Specification Language (CSL), which is defined in Chapter 6 and intends to

restrict arbitrary computations in communications. All methods in CSL are defined in CSL, which can be

used to define behaviors and communications. For more details on these methods, please refer to Chapter 6.

44

5.2.2 Behavior

Behavior is an abstract class and is defined in Figure 5.3. Each behavior runs in some context context,

an instance of ActorContext. Further, each behavior has a list of recipients targets, which is a list of

ActorRef, a receive method which is an abstract method and is executed when a message arrives at an

outlet or a handler which holds the behavior, and a setTargets method used to change the targets of the

behavior. ActorRef is used to refer to an actor. msg, which represents an incoming message, has the type of

Any that is the super type of any Scala type. Any is similar to Java’s super class Object. Once the processing

of an incoming message completes, a message (i.e., the result of processing the incoming message) will be

sent to the recipients if necessary. Programmers define their own concrete behavior classes by extending

Behavior and implementing the abstract method receive.

1 abstract class Behavior(val context: ActorContext, var targets: List[ActorRef]) extends CSL {
2 def receive(msg: Any, agent: ActorRef)
3 def setTargets(ts: List[ActorRef]) = {
4 targets = ts
5 }
6 }

Figure 5.3: Abstract Behavior Class

Next, I show the implementations of behaviors described in Chapter 3.

Forwarder

Figure 5.4 shows the code for forwarder, which is defined as Forwarder. Upon receiving a message, a

forwarder forwards it to its target targets. In the code, sendm defined in CSL sends message msg to a list

of recipients targets.

1 class Forwarder(val ct: ActorContext, val t: List[ActorRef]) extends Behavior(ct, t) {
2 def receive(msg: Any, agent: ActorRef) = {
3 sendm(targets, msg)
4 }
5 }

Figure 5.4: Behavior: Forwarder

Counter

Figure 5.5 shows the code for counter, which counts the number of received messages and sends the result

to its targets. In the code, Counter has a local variable i, which is incremented by 1 at the arrival of a

message.

45

1 class Counter(val ct: ActorContext, val t: List[ActorRef]) extends Behavior(ct, t) {
2 var i = 1
3 def receive(msg: Any, agent: ActorRef) = {
4 sendm(targets, i)
5 i = i + 1
6 }
7 }

Figure 5.5: Behavior: Counter

Timer

Figure 5.6 shows the code for timer, which delays an incoming message for defined time and then sends the

message to its targets. In the code delay is defined in CSL and is used to postpone the execution for defined

msecs milliseconds.

1 class Timer(val ct: ActorContext, val t: List[ActorRef], val msecs: Int) extends Behavior(ct, t) {
2 def receive(msg: Any, agent: ActorRef) = {
3 delay(msecs)
4 sendm(targets, msg)
5 }
6 }

Figure 5.6: Behavior: Timer

Applier

The code for applier is shown in Figure 5.7. An applier applies a programmer-provided function f to received

messages and then sends the result to its targets. Function f has the type of Any => Any.

1 class Applier(val ct: ActorContext, val t: List[ActorRef], val f: Any => Any) extends Behavior(ct, t) {
2 def receive(msg: Any, agent: ActorRef) = {
3 sendm(targets, f(msg))
4 }
5 }

Figure 5.7: Behavior: Applier

Encryption Applier can be used to encrypt received messages if the programmer-supplied function imple-

ments an encryption algorithm. Suppose encrypt is a function that receives a string as a parameter and

returns it encrypted. Providing this function as a parameter creates an encryptor as illustrated in Figure 5.8.

In the code, context is an instance of ActorContext and targets is a list of ActorRef.

encryptor can be used by outlets and handlers which require encrypting received messages. Similarly,

applier can be used to decrypt received messages.

46

1 val encryptor = new Applier(context, targets, encrypt)

Figure 5.8: Encryptor Implemented Using Applier

Filter

The code for filter is shown in Figure 5.9. At the arrival of a message, a filter checks it against function f to

determine whether it should be filtered or not. Function f has the type of Any => Boolean and is written

by programmers.

1 class Filter(val ct: ActorContext, val t: List[ActorRef], val f: Any => Boolean) extends Behavior(ct, t) {
2 def receive(msg: Any, agent: ActorRef) = {
3 if (f(msg)) {
4 sendm(targets, msg)
5 }
6 }
7 }

Figure 5.9: Behavior: Filter

Selector

A selector (Figure 5.10) sends received messages to its selected targets. For each received message, it chooses

a subset of recipients from its targets using the function select written by programmers. Therefore, for

different messages, they may be sent to different targets in accordance with the definition of select.

1 class Selector(val ct: ActorContext, val t: List[ActorRef],
2 val select: (Any, List[ActorRef]) => List[ActorRef]) extends Behavior(ct, t) {
3 def receive(msg: Any, agent: ActorRef) = {
4 sendm(select(msg, targets), msg)
5 }
6 }

Figure 5.10: Behavior: Selector

Aggregator

Aggregator is defined as class Aggregator in Figure 5.11. It accepts two functions: cond and aggr, which

are written by programmers. On the arrival of a message, an aggregator inserts it into its local message

list msgs. Then it checks whether it stops receiving messages by calling function cond, which takes the

message list as the input and returns a Boolean value. cond returns true if a termination condition is met,

otherwise, false. In the case of termination, it aggregates all received messages then sends the aggregated

result to its targets. The message list is reset to empty in order to be reused for next aggregation if any.

47

1 class Aggregator(val ct: ActorContext, val t: List[ActorRef],
2 val cond: List[Any] => Boolean, val aggr: List[Any] => Any) extends Behavior(t) {
3 var msgs = List[Any]()
4 def receive(msg: Any, agent: ActorRef) = {
5 msgs = append(msg, msgs)
6 if (cond(msgs)) {
7 sendm(t, aggr(msgs))
8 msgs = List[Any]()
9 }

10 }
11 }

Figure 5.11: Behavior: Aggregator

5.2.3 Outlets and Handlers

Outlets and handlers are instances of class Outlet and class Handler , respectively, each of which has a

behavior parameter bhv and extends Akka Actor.

Outlets

Figure 5.12 defines the class of Outlet, which is an actor and implements the receive method which is

executed at the arrival of a message. It recognizes five types of messages:

• Behv(b) message sets the outlet with a new behavior b.

• “Behavior” returns the outlet’s behavior to the querier.

• NewTargets(t) sets the behavior’s targets to t.

• Targets(t) adds a list of new targets t to the behavior’s existing targets.

• other message msg is handled by the outlet’s behavior.

The first four types of message are considered as system messages, because only handlers are allowed to

send such messages to outlets in order to change an outlet’s behavior. The last type of messages is handled

by the outlet’s behavior.

1 class Outlet(var bhv: Behavior) extends Actor {
2 def receive = {
3 case Behv(b) => bhv = b
4 case "Behavior" => sender ! bhv
5 case NewTargets(t) => bhv.setTargets(t)
6 case Targets(t) => bhv.setTargets(bhv.getTargets ::: t)
7 case msg => bhv.receive(msg, self)
8 }
9 }

Figure 5.12: Outlet

48

Handlers

Likewise, Handler is an actor and implements receive method which is executed at the arrival of a

message. Handlers do not recognize Behv(b), “Behavior”, NewTarget(t), and Targets(t) because

handlers do not change its behavior and targets.

1 class Handler(var bhv: Behavior) extends Actor {
2 def receive = {
3 case msg => bhv.receive(msg, self)
4 }
5 }

Figure 5.13: Handler

5.2.4 Communication

All programmer-specified communication types are subclassed from Communication (Figure 5.14). Each

communication has attributes, inlets, outlets, and handlers. inlets, outlets and handlers

are used to keep track of input outlets, output outlets, and handlers, respectively.

1 abstract class Communication (val context: ActorContext) extends CSL {
2 var attributes = Map.empty[String, Any]
3 var inlets = List[ActorRef]()
4 var outlets = List[ActorRef]()
5 var handlers = List[ActorRef]()
6

7 def getInlets = inlets
8 def getOutlets = outlets
9 def getHandlers = handlers

10 def addInlets(ins: List[ActorRef]) = {
11 inlets = inlets ::: ins
12 }
13 def addOutlets(outs: List[ActorRef]) = {
14 outlets = outlets ::: outs
15 }
16 def addHandlers(hdlers: List[ActorRef]) = {
17 handlers = handlers ::: hdlers
18 }
19

20 def setAttr(attrs: Map[String, Any]) = {
21 attributes = attrs
22 terminate()
23 init() // initialize outlets and handlers
24 }
25 def terminate() = {
26 inlets.foreach(context.stop(_)) // stop inlets
27 inlets = List[ActorRef]()
28 outlets.foreach(context.stop(_)) // stop outlets
29 outlets = List[ActorRef]()
30 handlers.foreach(context.stop(_)) // stop handlers
31 handlers = List[ActorRef]()
32 }
33

34 def launch()
35 def init()
36 }

Figure 5.14: Abstract Communication Class

Figure 5.15 shows a communication object that has one input outlet, one handler, and one output outlet.

The rectangle labeled with CO represents the object. The three ovals labeled with in, hdr, and out are the

49

input outlet, the handler, and the output outlet, respectively. The lines from the object to ovals denote that

the object has references to these actors.

Figure 5.15: A Communication Object

Getter and Setter Methods

getInlets, getOutlets, and getHandlers return the input outlets, the output outlets, and the han-

dlers, respectively, of a communication. addInlets, addOutlets, and addHandlers are used to add

a list of input outlets ins, a list of output outlets outs, and a list of handlers hdlers to existing input

outlets, output outlets, and handlers, respectively.

Destroy Method

The method terminate stops outlets and handlers if any. The method is specially used when resetting a

communication’s attributes which establishes initial rendezvous for another set of participants. The run-time

system can call this method in order to terminate a communication.

Attribute Method

After a communication is created, setAttr is called to initialize its outlets and handlers. Figure 5.16 shows

this case. We can see after calling setAttr, the outlets and the handler are created and the communication

object has references to them. As a matter of fact, it is the init method to create outlets and handlers,

which will be discussed shortly.

Figure 5.16: First Call to setAttr

A communication can be reused by reseting its attributes. This is done by invoking another call to

setAttr. This case is illustrated in Figure 5.17. The second call resets the communication’s attributes,

50

destroys existing outlets and handlers, and creates new outlets and handlers for the communication. Although

through setAttr, we have a new set of outlets and handlers for a communication, the number of outlets

and handlers is not changed because it is defined in the class of the communication.

Figure 5.17: Second Call to setAttr

Abstract Methods

init and launch are both abstract methods, which must be implemented by a concrete communication

class. init initializes (or creates if they do not exist) the outlets and handlers for a communication. The num-

ber of outlets and handlers of a communication type has is defined in a concrete subclass of Communication

class.

A communication is launched by calling launch. Typically, launch sends a communications participants

the relevant names of its input outlets. Figure 5.18 shows this scenario. Suppose there are three participants

and the communication has one input outlet. On the left side, the communication CO has an input outlet in1

and the three participants do not know the existence of the input outlet. After invoking launch, the name

of the input outlet is sent to the participants. In this figure, the three lines out from in1 means the name of

in1 is sent to the participants. Once the participants know the input outlet, they can send messages to it.

Figure 5.18: Call to launch

5.2.5 The Life Cycle of a Communication

Figure 5.19 shows the life cycle of a communication object, which includes four states: new, initialized,

running, and terminated.

A communication comes into existence once an application creates it. At this stage, although a commu-

nication exists as an object, its attributes are not yet set and its outlets and handlers do not exist yet. Its

51

state becomes initialized through the initialization operation. Launching operation makes the communication

running. For some long-lived communications, the running state is their final state. For others that should

terminate, the final state is terminated, in which a communication may be garbage collected.

Figure 5.19: The Life Cycle of a Communication

5.3 Examples: Communications

To show how to implement a communication, this section presents three communication examples: broad-

caster, router, and Multi-Origin Many-to-Many.

5.3.1 Broadcaster

A broadcaster communication shown in Figure 5.20 has one input outlet in and one output outlet out. Both

outlets have the behavior of forwarder. Any actors (represented by ovals) connected to the input outlet of

broadcaster can use it to broadcast a message to actors connected to the output outlet. Particularly, in the

figure, three actors know the name of the input outlet, and three actors are connected to the output outlet.

The input outlet forwards any received message to the output outlet, which, in turn, forwards the message

to all connected actors.

Figure 5.20: Communication: Broadcaster

Figure 5.21 shows the code. Its output outlet is created with a behavior of Forwarder and thus forwards

received messages to the communication’s targets. Likewise, its input outlet forwards messages to the output

outlet. init method retrieves attributes which is set by setAttr, and create the output outlet and the

input outlet. In line 10 and line 12, context is an instance of ActorContext and is used to create an

52

actor in createOutlet method, which is defined in CSL. createOutlet creates an input outlet if the

third parameter is input or an output outlet if the third parameter is output. launch method launches

the communication, in which it tells all participants the name of the input outlet so that participants can

send it messages. On the arrival of a message from a participant at the input outlet, the input outlet sends

the message to the output outlet because the former targets the latter. Finally, the output outlet forwards

the message to the recipients of the communication.

1 class Broadcaster(ct: ActorContext) extends Communication(ct) {
2 var out: ActorRef = null
3 var in: ActorRef = null
4 var recipients: List[ActorRef] = null
5 var participants: List[ActorRef] = null
6 def init() = {
7 recipients = attr(attributes, "recipients").asInstanceOf[List[ActorRef]]
8 participants = attr(attributes, "participants").asInstanceOf[List[ActorRef]]
9 // output outlet

10 out = createOutlet(context, this, "output", new Forwarder(context, recipients))
11 // input outlet
12 in = createOutlet(context, this, "input", new Forwarder(context, List(out)))
13

14 }
15 def launch() = {
16 sendm(participants, in)
17 }
18 }

Figure 5.21: Code: Broadcaster Communication

Broadcaster communication decouples senders and recipients so that they are not required to know each

other in order to communicate. It can be seen as a simple implementation of publisher-subscriber commu-

nication pattern [29]. We call it simple because message senders and message recipients do not distinguish

topics, whereas, publisher-subscriber pattern does. Now, suppose we have a different behavior that imple-

ments logics for discerning topics. If we use this behavior for either the input outlet or the output outlet, we

get a general-purpose publisher-subscriber system.

5.3.2 Router

Figure 5.22 shows a router communication, which has one input outlet in, one handler selector, and two

output outlets out1 and out2. To simplify the figure, I do not draw actors. Note that each outlet can be

connected to multiple actors. The handler has the behavior of selector, which sends messages to either of the

two output outlets but not both at the same time.

Figure 5.22: Communication: Router

53

The code for router is presented in Figure 5.23. Router has recipients recipients, participants parts,

and a function select used to instantiate the selector behavior, one input outlet inlet, one handler

handler, and two output outlets: outlet1 and outlet2. All outlets have the behavior of forwarder. The

handler has the behavior of selector and is created by createHandler, which is defined in class CSL. At

the time of launching, router notifies all participants the name of the input outlet. In the code, we assume

there are two recipients in the recipient list recipients. outlet1 has the first recipient as its target, and

outlet2 has the second one as its target. When a message from a participant arrives at the input outlet,

it is forwarded to the handler that is a selector. The selector sends the message to one of the two output

outlets by checking the message with the programmer-provided function select. The output outlet that

receives the message forwards it to its targets.

1 class Router(ct: ActorContext) extends Communication(ct) {
2 var recipients: List[ActorRef] = null;
3 var parts: List[ActorRef] = null
4 var select: (Any, List[ActorRef]) => List[ActorRef] = null;
5

6 var inlet: ActorRef = null
7 var handler: ActorRef = null
8 var outlet1: ActorRef = null
9 var outlet2: ActorRef = null

10

11 def launch() = {
12 sendm(parts, inlet);
13 }
14

15 def init() = {
16 recipients = attr(attributes, "recipients").asInstanceOf[List[ActorRef]]
17 parts = attr(attributes, "parts").asInstanceOf[List[ActorRef]]
18 select = attr(attributes, "select").asInstanceOf[(Any, List[ActorRef]) => List[ActorRef]]
19

20 // create outlets and the handler
21 outlet1 = createOutlet(context, this, "output", new Forwarder(context, List(recipients(0))))
22 outlet2 = createOutlet(context, this, "output", new Forwarder(context, List(recipients(1))))
23 handler = createHandler(context, this, new Selector(context, List(outlet1, outlet2), select))
24 inlet = createOutlet(context, this, "input", new Forwarder(context, List(handler)))
25 }
26 }

Figure 5.23: Code: Router Communication

This implementation has a limitation. That is, router has only two output outlets. As a consequence,

it only chooses one of them as a recipient. If an application requires more than two targets, this version of

implementation is not able to handle it. I will discuss another version of implementation in Section 5.6.

5.3.3 Multi-Origin Many-to-Many

Multi-Origin Many-to-Many (MOM2M) communication shown in Figure 5.24 has one input outlet and one

output outlet. From the surface, it is the same as a channel. However, it is different because we make its

output outlet have aggregator behavior defined in Figure 5.11, whereas, the output outlet of a channel has

the behavior of forwarder.

Mom2m (Figure 5.25) has a set of recipients recipients, a group of participants participants,

condition function cond, aggregation function aggr, one input outlet inlet and one output outlet outlet.

54

Figure 5.24: Communication: Multi-Origin Many-to-Many

The input outlet has forwarder behavior and the output outlet has aggregator behavior. For an MOM2M

communication, incoming messages arrive at its input outlet, which, in turn, forwards the messages to its

output outlet. Because the output outlet has the behavior of aggregator, the received messages are aggregated

once the pre-defined condition is satisfied checked by cond. The aggregated result is sent to the recipients

of the communication.

By passing different condition function cond and an aggregation function aggr, programmers can accom-

plish different tasks using an MOM2M. For example, an MOM2M can be used as a barrier to synchronize

multiple concurrent computations: suppose there are n computations. Programmers can provide a cond

function which returns true when n messages have been received, one from each of the computations.

1 class Mom2m(ct: ActorContext) extends Communication(ct) {
2 var recipients: List[ActorRef] = null;
3 var participants: List[ActorRef] = null;
4 var cond: List[Any] => Boolean = null
5 var aggr: List[Any] => Any = null
6

7 var outlet: ActorRef = null
8 var inlet: ActorRef = null
9

10 def launch() = {
11 sendm(participants, inlet);
12 }
13 def init() = {
14 recipients = attr(attributes, "recipients").asInstanceOf[List[ActorRef]]
15 participants = attr(attributes, "participants").asInstanceOf[List[ActorRef]]
16 cond = attr(attributes, "cond").asInstanceOf[List[Any] => Boolean]
17 aggr = attr(attributes, "aggr").asInstanceOf[List[Any] => Any]
18

19 // create output outlet
20 val aggregator = new Aggregator(context, recipients, cond, aggr)
21 outlet = createOutlet(context, this, "output", aggregator)
22

23 // create input outlet
24 val input = new Forwarder(context, List(outlet))
25 inlet = createOutlet(context, this, "input", input)
26 }
27 }

Figure 5.25: Code: MOM2M Communication

Note that the behaviors of the output outlet and the input outlet can be switched, because all we need

is one of the two outlets doing the aggregation. In fact, our implementation allows a single outlet to act for

both an input and an output outlet, allowing MOM2M to be implemented with only one outlet.

Another implementation of MOM2M communication can be making it have one input outlet, one handler,

and one output outlet as shown in Figure 5.26. In this implementation, aggregation is separated from the

output outlet and is carried out by the handler. The code for this implementation is shown in Section A.2

in Appendix A.

55

Figure 5.26: Communication: MOM2M Version 2

The key difference between MOM2M and other aggregation communication protocols, such as message

continuation [79], activators [32], reduction communication pattern [21], and join continuation [77] is that the

former does not require every participant to respond because of the existence of the termination condition

function.

5.4 Communication-Oriented Programming

This section presents Communication-Oriented Programming (COP). Generally speaking, COP requires the

following three steps:

• Implement required behaviors if they do not exist in the behavior library

• Implement the communications used in the application if they are not available in the communication

library

• Use the communications

I illustrate each step by walking through two examples – SOM2M presented in Chapter 1 and barrier imple-

mented using MOM2M.

5.4.1 Example: Single-Origin Many-to-Many

The SOM2M communication has the same pictorial view as MOM2M shown in Figure 5.26, and it has one

input outlet, one handler, and one output outlet. However, the behavior of the handler and the behavior

of the output outlet are different from their counterparts in MOM2M. The input outlet receives votes from

participants and forwards them to the handler, the handler determines whether sufficient number of responses

has received and if so, aggregates them into a boolean value and sends the value to the output outlet. The

output outlet holds the draft message. Once it has received a message from the handler, it decides whether

the draft message should be sent to the recipients.

Implementing Behaviors

Through the above analysis, the input outlet has the behavior of forwarder, which is defined in Figure 5.4. The

handler has the behavior similar to aggregator defined in Figure 5.11, but it slightly different. In SOM2M,

56

the handler only needs to do aggregation once and sends a message to the output outlet once. In other

words, the aggregator does not need to be reused. The output outlet has the behavior that can hold the

draft message using a local variable and sends it if it receives a true value. We define the two behaviors in

Figure 5.27 and Figure 5.28, respectively.

Compared to Aggregator, AggregatorOneOff has one more local variable sent indicating whether

it has already sent a message. If yes, it does nothing on an incoming message; otherwise, it adds the incoming

message to its local message list, checks whether it stops receiving messages, sends out an aggregated message

if yes. Because AggregatorOneOff just does one-time aggregation, its local message list is not reset.

1 class AggregatorOneOff(val ct: ActorContext, val t: List[ActorRef],
2 val cond: List[Any] => Boolean, val aggr: List[Any] => Boolean) extends Behavior(t) {
3 var msgs = List[Any]()
4 var sent = false;
5 def receive(msg: Any, agent: ActorRef) = {
6 if (sent == false) {
7 msgs = append(msg, msgs)
8 if (cond(msgs)) {
9 sendm(t, aggr(msgs))

10 sent = true
11 }
12 }
13 }
14 }

Figure 5.27: Code: One-Off Aggregator Behavior

In addition to running context and a list of recipients, SpoutOneOff behavior has content to hold a

value. The behavior only processes messages with the type of Boolean. If a message has the other types,

the behavior does nothing. Once it receives a message which has the value of true, it sends the value of

content to targets. Like AggregatorOneOff, SpoutOneOff use a local variable sent to determine

whether a message is sent. That is, SpoutOneOff only sends out its content once.

1 class SpoutOneOff(val ct: ActorContext, val t: List[ActorRef], val content: Any) extends Behavior(t) {
2 var sent = false
3 def receive(msg: Any, agent: ActorRef) = {
4 if (sent == false) {
5 if (msg.isInstanceOf[Boolean]) {
6 if (msg.asInstanceOf[Boolean] == true) {
7 sendm(targets, content)
8 sent = true
9 }

10 }
11 }
12 }
13 }

Figure 5.28: Code: One-Off Spout Behavior

Implementing Communications

SOM2M communication is defined in Figure 5.29 as Som2m, which has six attributes: a list of targets

recipients, a message payload content to store the draft message, a query message query, a list of

participants parts, condition function cond, and aggregation function aggr. The input outlet in has

57

the behavior of Forwarder, the output outlet out has SpoutOneOff behavior, and the handler has the

behavior of AggregatorOneOff. At the time of launching, participants are notified about the name of the

input outlet.

1 class Som2m(ct: ActorContext) extends Communication(ct) {
2 var recipients: List[ActorRef] = null
3 var content: Any = null
4 var query: Any = null
5 var parts: List[ActorRef] = null
6 var cond: List[Any] => Boolean = null
7 var aggr: List[Any] => Boolean = null
8

9 var out: ActorRef = null
10 var aggregator: ActorRef = null
11 var in: ActorRef = null
12 def init() = {
13 // retrieve attributes
14 recipients = attr(attributes, "recipients").asInstanceOf[List[ActorRef]]
15 content = attr(attributes, "content").asInstanceOf[Any]
16 query = attr(attributes, "query").asInstanceOf[Any]
17 parts = attr(attributes, "parts").asInstanceOf[List[ActorRef]]
18 cond = attr(attributes, "cond").asInstanceOf[List[Any] => Boolean]
19 aggr = attr(attributes, "aggr").asInstanceOf[List[Any] => Boolean]
20

21 // create the output outlet, the handler, and the input outlet
22 out = createOutlet(context, this, "output", new SpoutOneOff(context, recipients, content))
23 aggregator = createHandler(context, this, new AggregatorOneOff(context, List(out), cond, aggr))
24 in = createOutlet(context, this, "input", new Forwarder(context, List(aggregator)))
25 }
26 def launch() = {
27 tellm(in, parts, query);
28 }
29 }

Figure 5.29: Single-Origin Many-to-Many Communication

Using Communications

The steps of using a communication in an application including creating an instance of the communication,

initiating the communication instance by setting its attributes, and launching the communication.

Figure 5.30 demonstrates the usage of SOM2M. Suppose there are n participants and the number of

required “yes” votes is required. r is the message recipients and parts holds a list of participants. cond

and aggr functions are defined in the object funs. cond returns true when either of two conditions is

satisfied: (1) the number of agreements is greater than or equal to required, (2) the number of disagreement

plus required is greater than total number of participants. Once cond returns true, the aggregation

process starts by calling aggr, which finds the number of agreements in the list and returns true if it is

greater than or equal to required, false otherwise.

The three steps of using a communication are shown in line 5, line 6, and line 13, respectively. The

complete code is shown in Appendix A Section A.3.

In this section, we use SOM2M to show how to develop an application using communications. In SOM2M,

the output outlet only accepts a Boolean value but messages having other types are discarded. As application

requirements change, we can easily change the behavior of the output outlet and the implementation of

aggr function to accommodate new requirements. For example, in current SOM2M case, if the number of

58

1 var cond = funs.cond(n, required, _: List[Any])
2 var aggr = funs.aggr(required, _: List[Any])
3 val payload = "some meaningful information"
4

5 val som2m = new Som2m(context)
6 som2m.setAttr(Map(
7 "recipients" -> List(r),
8 "content" -> payload,
9 "query" -> "vote this:" + payload,

10 "parts" -> parts,
11 "cond" -> cond,
12 "aggr" -> aggr))
13 som2m.launch()
14

15 object funs {
16 def cond(total: Int, required: Int, l: List[Any]): Boolean = {
17 var na = 0 // no. of agreement
18 var nd = 0 // no. of disagreement
19 // go through the message list to get na and nd
20 l.foreach(x =>
21 if (x == "yes") {
22 na = na + 1
23 } else {
24 nd = nd + 1
25 })
26 if (na >= required || (nd + required) > total)
27 true
28 else
29 false
30 }
31

32 def aggr(required: Int, l: List[Any]): Boolean = {
33 var na = 0 // no. of agreement
34 l.asInstanceOf[List[String]].foreach(x => if (x == "yes") na = na + 1)
35 if (na >= required) true else false
36 }
37 }

Figure 5.30: Using SOM2M Communication

agreement is less than the required number, no message will be sent to the recipient and no participant is

notified. Consider the application should send a failure (for instance) message to the recipient and notify

all participants a failure message, too. We can change the behavior of the output outlet at runtime to meet

these requirements.

5.4.2 Example: Barriers

We use MOM2M communication to implement a barrier. Since the communication itself and behaviors

used in the communication have already defined previously, in this example, I only show how to use this

communication.

Figure 5.31 shows the code for implementing a barrier using MOM2M. In this implementation, the recip-

ients and participants of the MOM2M communication are the same set of processes processes. Suppose

there are n processes. Functions cond and aggr are defined in the object funs. On the arrival of each

message from a process, cond checks whether the number of messages received has reached n. If so, it

returns true, triggering aggregation, which in this case just returns a “go” message, which is sent to all

the processes. Once a process receives a “go” message, it starts a new iteration if any. The entire code for

implementing a barrier and testing it is listed in Section A.4 in Appendix A. From the code, we can see the

implementation of a barrier using Mom2m only requires defining two functions: cond and aggr.

59

1 var cond = funs.cond(n, _: List[Any])
2 var aggr = funs.aggr(_:List[Any])
3

4 // create a Mom2m, initialize it, and launch it
5 val barrier = new Mom2m(context)
6 barrier.setAttr(Map("recipients" -> processes, "participants" -> processes, "cond" -> cond, "aggr" -> aggr))
7 barrier.launch()
8

9 // functions used to initialize a barrier
10 object funs {
11 def cond(total: Int, l: List[Any]): Boolean = {
12 if (l.length == total)
13 true
14 else
15 false
16 }
17

18 def aggr(l: List[Any]): Any = {
19 "go"
20 }
21 }

Figure 5.31: Barrier Implementation Using MOM2M

5.5 Composition

I have implemented the three ways of composing communications: input merge, output merge, and output-

input merge. In our implementation, I use a dummy communication to hold the composed communication.

The definition of Dummy is shown in Figure 5.32, which does not have any outlets and handlers, and the two

methods init and launch have the empty body.

1 class Dummy(ct: ActorContext) extends Communication(ct) {
2 def launch() = {}
3 def init() = {}
4 }

Figure 5.32: Dummy Communication

Input Merge

Input merge is implemented as method Inputs (Figure 5.33), which takes an actor context, a list of com-

munications coms, a list of input outlets to be merged ins, and a behavior b used by the newly created

handler.

In the code, we first create a dummy communication used as a container of the composed communication.

Then, for the dummy communication, we create a handler with behavior b targeting ins. Next, we add

all existing handlers of communications coms to the composed communication. Then, we add all input

outlets but the merged ones and all output outlets to the composed communication. Finally, the composed

communication is returned.

60

1 def Inputs(context: ActorContext, coms: List[Communication], ins: List[ActorRef], b: Behavior) = {
2 // create a dummy communication
3 val cc = new Dummy(context)
4

5 // create handler with behavior b, which targets ins
6 b.setTargets(ins);
7 val handler = createHandler(context, cc, b)
8 // add all handlers of all communications to the composed communication
9 var handlers = List[ActorRef]()

10 coms.foreach(c => handlers = handlers ::: c.getHandlers)
11 cc.addHandlers(handlers)
12

13 // create input outlet with behavior Forwarder
14 val input = new Forwarder(context, List(handler))
15 val inlet = createOutlet(context, cc, "input", input)
16

17 // get all input outlets
18 var inlets = List[ActorRef]()
19 coms.foreach(c => inlets = inlets ::: c.getInlets)
20 // remove merged input outlets
21 inlets = inlets.filterNot(ins.contains(_))
22 // add input outlets to the composed communication
23 cc.addInlets(inlets)
24

25 // add output outlets to the composed communication
26 var outlets = List[ActorRef]()
27 coms.foreach(c => outlets = outlets ::: c.getOutlets)
28 cc.addOutlets(outlets)
29

30 cc
31 }

Figure 5.33: Code: Input Merge

Output Merge

Output merge is implemented as method Outputs (Figure 5.34), which takes an actor context, a list of

communications coms, a list of output outlets to be merged outs, a behavior b used by the newly created

handler, and a new target t.

In the code, we first create a dummy communication as a holder of the composed communication. Then,

we add all input outlets to the composed communication. Next, we create an output outlet having behavior

Forwarder targeting t for the dummy communication. Then, we add all existing output outlets but

merged ones to the composed communication. After we create a handler with behavior b targeting the newly

created output outlet, we add all existing handlers of communications coms to the composed communication.

Finally, we change the merged output outlets to target the newly created handler and return the composed

communication.

Output Input Merge

OutIn (Figure 5.35) implements output-input merge, which connects output outlets to input outlets. The

parameters it takes are an actor context context, a list of communications coms, and a list of bindings

bindings, each of which is a 3-tuple having the form of (output outlet, input outlet, behavior).

The composition process is as follows: (1) create a dummy communication cc, which is the composed

communication. (2) create a handler for each tuple in bindings with the provided behavior targeting

the input outlet in the same tuple. (3) add existing handlers to the composed communication. (4) add

61

1 def Outputs(context: ActorContext, coms: List[Communication], outs: List[ActorRef],
2 b: Behavior, t: List[ActorRef]) = {
3 // create a dummy communication
4 val cc = new Dummy(context)
5

6 var inlets = List[ActorRef]()
7 coms.foreach(c => inlets = inlets ::: c.getInlets)
8 cc.addInlets(inlets)
9

10 // create output outlet with behavior Forwarder and target t
11 val output = new Forwarder(context, t)
12 val outlet = createOutlet(context, cc, "output", output)
13 // add all output outlets but merged output outlets to the composed communication
14 var outlets = List[ActorRef]()
15 coms.foreach(c => outlets = outlets ::: c.getOutlets)
16 outlets = outlets.filterNot(outs.contains(_))
17 cc.addOutlets(outlets)
18

19 // set b’s targets to newly created outlet and create handler with behavior b
20 b.setTargets(List(outlet));
21 val handler = createHandler(context, cc, b)
22 // add existing handlers of composing communications to the composed communication
23 var handlers = List[ActorRef]()
24 coms.foreach(c => handlers = handlers ::: c.getHandlers)
25 cc.addHandlers(handlers)
26

27 // change the target of composed outlets
28 outs.foreach(_ ! Targets(List(handler)))
29

30 cc
31 }

Figure 5.34: Code: Output Merge

existing outlets but merged outlets in the bindings to the composed communication. (5) return the composed

communication.

Example

Now, we use input merge as an example to illustrate how to compose communications. The code for output

merge and output-input merge are listed in Appendix A Section A.5 and Section A.6, respectively.

Particularly, we compose three communications as shown in Figure 4.7. The composed communication

defined as InputMerge shown in Figure 5.36 are built from three Broadcaster communications, each of

them has its own recipients: recipients1, recipients2, and recipients3, respectively. senders

are those computations that use InputMerge to send messages. The three Broadcaster communications

are composed at their input outlets: List(c1.in, c2.in, c3.in), and the behavior of newly created

handler for merging is forwarder. Note that one can use different behaviors, such as applier, filter, etc. The

Inputs method is where the composition occurs and returns a composed communication cc. Then, all

outlets and handlers of returned communication are added to the InputMerge communication. Finally, the

communication informs senders the name of its input outlet. Because there is only one input outlet for the

composed communication, the code use inlets(0) to get it.

62

1 def OutIn(context: ActorContext, coms: List[Communication], bindings: List[(ActorRef, ActorRef, Behavior)]) = {
2 var ins = List[ActorRef]()
3 var outs = List[ActorRef]()
4 val cc = new Dummy(context)
5

6 bindings.foreach(b => {
7 // set the target of the handler’s behavior to the input outlet
8 b._3.setTargets(List(b._2))
9 val handler = createHandler(context, cc, b._3)

10 b._1 ! Targets(List(handler))
11 // merged input outlets
12 ins = ins ::: List(b._2)
13 // merged output outlets
14 outs = outs ::: List(b._1)
15 })
16

17 // add all handlers of all communications
18 var handlers = List[ActorRef]()
19 coms.foreach(c => handlers = handlers ::: c.getHandlers)
20 cc.addHandlers(handlers)
21

22 // add all input outlets but merged input outlets in the bindings
23 var inlets = List[ActorRef]()
24 coms.foreach(c => inlets = inlets ::: c.getInlets)
25 inlets = inlets.filterNot(ins.contains(_))
26 cc.addInlets(inlets)
27

28 // add all output outlets but merged output outlets in the bindings
29 var outlets = List[ActorRef]()
30 coms.foreach(c => outlets = outlets ::: c.getOutlets)
31 outlets = outlets.filterNot(outs.contains(_))
32 cc.addOutlets(outlets)
33

34 cc
35 }

Figure 5.35: Code: Ouput-Input Merge

5.6 Summary

This chapter presents a prototype implementation of interActors. We assume there is a library of behav-

iors that can be used by outlets and handlers, and a library of communications that can be employed by

applications.

In the case of a behavior does not exist in the library, programmers should develop it. Then the behavior

can be used to define a communication. To develop an application based on communications, the commu-

nications are either available in existing library or developed if not available. Once programmers have a

communication class, they can instantiate a communication from it, set attributes for the communication,

and launch it.

Although any Scala statement is allowed in the body of a behavior definition and a communication

definition for now, we do not intend to permit arbitrary code in the definitions. I discuss my effort to restrict

arbitrarily complex code in the definitions of behaviors and communications in Chapter 6.

Although in Chapter 3, I mentioned that outlets are used to receive messages from and send messages

to actors, and handlers process communication logic, in our implementation, we allow outlets and handlers

to have the same set of behaviors. Consequently, outlets can have the same message handling capacity as

handlers. Therefore, there is an opportunity to optimize our implementation by reducing the number of

outlets and handlers in a communication. In this chapter, I implement a number of communications and

63

1 class InputMerge(ct: ActorContext) extends Communication(ct) {
2 val c1 = new Broadcaster(ct)
3 val c2 = new Broadcaster(ct)
4 val c3 = new Broadcaster(ct)
5

6 var recipients1: List[ActorRef] = null
7 var recipients2: List[ActorRef] = null
8 var recipients3: List[ActorRef] = null
9 var senders: List[ActorRef] = null

10

11 def init() = {
12 recipients1 = attr(attributes, "recipients1").asInstanceOf[List[ActorRef]]
13 recipients2 = attr(attributes, "recipients2").asInstanceOf[List[ActorRef]]
14 recipients3 = attr(attributes, "recipients3").asInstanceOf[List[ActorRef]]
15 senders = attr(attributes, "senders").asInstanceOf[List[ActorRef]]
16 }
17 def launch() = {
18 c1.setAttr(Map("recipients" -> recipients1, "participants" -> null))
19 c2.setAttr(Map("recipients" -> recipients2, "participants" -> null))
20 c3.setAttr(Map("recipients" -> recipients3, "participants" -> null))
21

22 // a list of outlets to be merged
23 val inset = List(c1.in, c2.in, c3.in)
24

25 // behavior for newly created handler
26 val b = new Forwarder(ct, inset)
27

28 // merge
29 val cc = Inputs(context, List(c1, c2, c3), inset, b)
30

31 // add existing input outlets, output outlets, and handlers
32 addInlets(cc.getInlets)
33 addHandlers(cc.getHandlers)
34 addOutlets(cc.getOutlets)
35

36 // notify computations which use this communication
37 val inlets = getInlets
38 sendm(senders, inlets(0))
39 }
40 }

Figure 5.36: Example: Input Merge Three Broadcasters

each of them has input outlets and output outlets. Based on the above discussions, those implementation can

be optimized by using only one outlet, which can play the roles of input outlet, handler, and output outlet.

For example, for the MOM2M communication, we can remove the input outlet and allow participants to send

messages to the output outlet directly. Therefore, for this example, conceptually, there are three entities in a

communication: the input outlet, the handler, the output outlet. However, in implementation, there is only

one entity which plays the three roles altogether.

In some circumstances, reducing the number of outlets and handlers may improve the scalability of a

communication. For instance, existing router communication has two output outlets, which restricts the

communication can only send messages to one of two sets of recipients. What if there are more sets of

recipients? Alternatively, router can be implemented using one outlet, which receives messages from actors,

selects a set of actors as targets, and sends messages to selected actors. Each time, at the receipt of a message,

a different set of actors may be chosen as new targets. The code for this implementation is illustrated in

Section A.7 in Appendix A.

64

Chapter 6

Communication Specification Language

Although communications can be coded using our implementation directly in Scala as shown in Chapter

5, I have also developed a special language called Communication Specification Language (CSL) to specify

communications. The intention is to restrict arbitrary computations from being included in communications.

In other words, CSL only allows specification of communications which can be constructed using the com-

position rules presented in Chapter 3. The purpose of eliminating arbitrary code from communications is to

prevent communications from being treated as computations. Instead of creating a language from scratch, I

have styled CSL after the Scala programming language [60]. I have implemented a simple source-to-source

translator, which translates CSL specification code into pure Scala code for actual execution.

This chapter is organized as follows: Section 6.1 presents the abstract syntax of CSL. Design concerns

and open questions are discussed in Section 6.2. CSL code examples for behaviors and communications are

elaborated in Section 6.3. Section 6.4 describes the CSL translator. Section 6.5 summarizes this chapter.

6.1 Syntax

All valid Scala identifiers, types, variable declarations are valid in CSL; however, not all Scala expressions are

valid. Particularly, I make only a small set of Scala expressions available in CSL. In addition, CSL defines its

own statements, which can be used to specify complex types of communications. Scala expressions used in

CSL can be found in most programming languages and take similar forms. One can use a different program-

ming language to define their own CSL or define CSL from scratch without referring to other programming

languages. In this sense, the language presented in this chapter is just for proof-of-concept purpose. I do not

restrict programmers from developing their own CSL.

I first present basic Scala types used in CSL in Section 6.1.1. Then I introduce the Syntax of CSL from

Section 6.1.2 to Section 6.1.5.

6.1.1 Scala Types

Basic Scala types used in CSL includes Int, String, Any, ActorRef, List, and Map. Int defines integers; String

defines strings; Any is the super type of any type, which is similar to Java’s superclass Object ; ActorRef

65

defines a reference to a concurrent computation;1 List defines a list of objects; and Map declares a pair of

values in the form of (a, b), where a is the first value, b the second. List and Map can be used to build more

complex types. For example, List[Int] defines a list of integers and List[Any] defines a list of object with

the type of Any ; Map[Int, String] defines a pair: the first value has the type of Int and the second has the

type of String. CSL also uses Scala tuple, which can contain different types of elements. For example, val

pair = (100, "hello world") defines a 2-tuple. To access the first element, we use pair. 1, and the

second, pair. 2.

6.1.2 Main Body

The abstract syntax for specifying a communication is presented in Figure 6.1. In the syntax, I do not

define the terms written in bold italic font because they should be self-explanatory. Keywords are written

in monospace font.

A communication definition begins with the keyword communication. A communication can be one

of two types: simple or composed. Either type of communication has a name, and is specified using a list

of attributes, the logic of the communications – represented by lists of outlets and handlers for a simple

communication, and represented by a list of existing communications for a composed communication – and

finally an initialization method.

attributes declares a list of attributes, each of the form attr name: Scala type, where attr name denotes

an attribute name.

A simple communication has a list of outlets outlet list. Each outlet has the type of input or output

and has a behavior, which stipulates how an outlet processes incoming messages. The definition of a behavior

is discussed shortly in Section 6.1.4. In addition, a communication may contain a list of handlers handler list.

Like outlets, each handler has a behavior. Generally, the behavior of a handler is more complex than the

behavior of an outlet, because a handler may need to distinguish the sources of incoming messages, but an

input outlet is not required to do so.

The initialization method init declares local variables, initializes these variables and sets up the initial

rendezvous for a communication, which is automatically executed when the communication is launched.

Statements used in this method are elaborated in Section 6.1.5.

A variable declaration takes two forms: val variable name (: Scala type | = Init Value) defines a con-

stant named variable name with the type of Scala type or the initial value Init Value; var variable name (:

Scala type | = Init Value) defines a variable named variable name with the type of Scala type or the initial

value Init Value. The only difference between val declaration and var declaration is that a constant cannot

be modified but a variable can. For example, both val foo: Int and var bar: Int define a variable;

foo cannot be changed but bar can.

CSL also defines a keyword this used to refer to itself by a communication.

1In Scala, a concurrent computation is called Actor.

66

communication ::=

communication name {

attributes:{attr list}

comm

initialization

}

comm ::= simple | composed

simple ::= outlet list

handler list (0|1)

composed ::= comms:{comm list}

composition:{composition decl}

attr list ::= attr name : Scala type ; attr list | attr name : Scala type ;

outlet list ::= outlet decl ; outlet list | outlet decl ;

outlet decl ::= outlet type outlet: outlet name(behavior)

outlet type ::= input | output

handler list ::= handler decl ; handler list | handler decl ;

handler decl ::= handler: handler name(behavior)

initialization ::=

init: {

var list(0|1)

statement ;∗

}

var list ::= var decl ; var list | var decl ;

var decl ::= val variable name (: Scala type | = Init Value) |

var variable name (: Scala type | = Init Value)

Figure 6.1: Communication Specification Language: Main Body

67

6.1.3 Composition Definition

Figure 6.2 shows the syntax for composed communications. To define a composed communication, a list of

communications comm list must be provided, which defines a set of communications to be composed, and a

composition glue composition decl must be specified, which defines a set of outlets to be merged in the cases

of input-merge and output-merge or a set of bindings in the case of output-input merge.

Each element in comm list has the form of comm var: comm type name. comm var is a variable used in

the definition of the composed communication; comm type name is a communication defined in CSL.

Composition glue for output-input merge is a list of bindings bindings, each of which is a 3-tuple. The

three values in a tuple are output outlet, input outlet, and a behavior.

Composition glue for input merge and output merge has two parts: a list of input or output outlets

outlets and a behavior behavior used in the newly created handler for the composition.

comm list ::= comm var : comm type name ; comm list |

comm var : comm type name ;

composition decl ::= bindings: List(3 tuple list) |

outlets: List(outlet decl list);

behavior: {behavior var : behavior type name ;}

3 tuple list ::= (output outlet, input outlet, behavior), 3 tuple list |

(output outlet, input outlet, behavior)

outlet decl list ::= outlet , outlet decl list | outlet

Figure 6.2: Communication Specification Language: Composition

6.1.4 Behavior Definition

Figure 6.3 shows the syntax for defining a behavior. A behavior definition starts with keyword behavior

and follows a behavior name, a list of targets targets, a parameter list, and a definition body.

The parameter list para list is a set of variables separated by comma. Variable declaration var decl is

defined in Figure 6.1.

The definition body has a method called receive, which has one parameter msg representing an incoming

message and defines the process logic when a message msg arrives at the outlet or the handler having this

behavior. var list is defined in Figure 6.1 and statement is defined in Figure 6.4.

68

behavior ::= behavior behavior name(targets, para list): behv body

para list ::= var decl, para list | var decl

behv body ::= {

var list(0|1)

receive(msg) = {

statement ;∗

}

}

Figure 6.3: Communication Specification Language: Initialization Method and Behavior

6.1.5 Statements and Expressions

CSL does not allow arbitrary Scala code but only the statements and expressions defined in Figure 6.4 can

be used in init and behavior definitions. I divide these statement into five groups.

Setter and Getter

• communication.setAttr(attribute map) sets the attributes of communication with the provided at-

tribute map with entries having the form of (attribute name, value).

• communication.getInlets gets the input outlets of communication.

Communication Statements

• send(recipient, msg) anonymously sends a message msg to a recipient named recipient

• sendm(recipients, msg) anonymously sends a message msg to multiple recipients named recipients

• tell(sender, recipient, msg) sends a message msg along with the sender’s name sender to a recipient

named recipient so that the recipient can reply to sender. Note that sender may be a third party other

than the actual sender. Using tell when responses are expected.

• tellm(sender, recipients, msg) sends a message msg along with the sender’s name sender to multiple

recipients named recipients so that the recipients can reply sender. Similar to tell, sender may not

be the actual sender. Using tellm when responses are expected.

69

statement ::=

communication.setAttr(attribute map) |

communication.getInlets |

send(recipient, msg) |

tell(sender, recipient, msg) |

sendm(recipients, msg) |

tellm(sender, recipients, msg) |

multiSend(recipient, data list) |

multiTell(sender, recipients, data list) |

createOutlet(outlet type, behavior name) |

createHandler(behavior name) |

change(outlet name, behavior name) |

inputs(list of communications, set of input outlets, behavior name) |

outputs(list of communications, set of output outlets, behavior name, targets) |

outin(list of communications, bindings) |

delay(time) |

subscribe(trigger type, input outlet of communication) |

variable = expression

trigger type ::= time trigger | location trigger | etc...

expression ::=

variable |

get(Scala list, nth) |

set(Scala list, nth, value) |

add(element, Scala list) |

append(element, Scala list) |

remove(Scala list, nth) |

empty(Scala list) |

isEmpty(Scala list) |

size(Scala list) |

null |

Scala if expression |

Scala function call expression |

Scala math expression

Figure 6.4: Communication Specification Language: Statements and Expressions

70

• multiSend(recipients, data list) anonymously sends the first element of data list to the first recipient

of recipients, the second element to the second recipient, and so on, until the last element to the last

recipient.

• multiTell(sender, recipients, data list) sends the first element of data list to the first recipient of

recipients along with the sender’s name, the second element to the second recipient along with the

sender’s name, and so on, until the last element to the last recipient.

Outlet and Handler Operations

• createOutlet(outlet type, behavior name) creates an input or output outlet depending on the outlet

type with the behavior named behavior name.

• createHandler(behavior name) creates a handler with the behavior named behavior name.

• change(outlet name, behavior name) change the behavior of the outlet named outlet name with the

new behavior behavior name.

In particular, I restrict outlets from using these operations, because although an outlet has a behavior, its

role is primarily to serve as an interface between a communication and the processes using the communication.

That is, an outlet cannot create an outlet, create a handler, or change the behavior of another outlet.

Composition Operations

• inputs merges a list of communication at a provided set of input outlets with the provided behavior.

• outputs merges a list of communication at a provided set of output outlets with the provided behavior.

• outin merges a list of communication with the provided bindings, each of which has the form of

(output outlet, input outlet, behavior).

Other Operations

• delay(time) delays the execution for defined time in milliseconds.

• subscribe(trigger, input outlet) allows a communication to subscribe an external trigger which can

send a message to the specified input outlet of the subscribing communication. Possible types of triggers

can be time, location, signal strength, magnetic field, amount of light, amount of noise, etc.

• variable = expression assigns the value of expression to a variable named variable.

CSL expressions include variable, list operations, and four types of Scala expressions: null, if expres-

sions, function call expressions, and math expressions.

List operations are functions for accessing or manipulating lists:

71

• get(Scala list, n): gets the nth element of a list

• set(Scala list, n, value): sets the nth element of a list to value.

• add(Scala list, elem): adds an element to the head of a list and returns a new list

• append(Scala list, elem): appends an element to the tail of a list and returns a new list

• remove(Scala list, n): removes the nth element of a list and returns the rest of list

• empty(Scala list): empties a list

• isEmpty(Scala list): checks whether a list is empty

• size(Scala list): determines the number of elements in a list

Scala lists are similar to arrays, which means all elements of a list have the same type.

6.2 Discussion

A number of design decisions were made in developing CSL. First, CSL is styled after Scala. Second, CSL

tries to restrict arbitrary code in the definitions of behaviors and communications. Third, CSL is designed

for clean and concise code.

Styled After Scala Currently, CSL is designed based on Scala. I developed a translator which translates

CSL code into Scala code. The translator carries out textual substitutions and the generated code is compiled

using Scala’s compiler. Programmers can develop their own translator in order to translate CSL code into their

preferred target languages and compile the generated code using compilers for the languages. To implement

interActors, target languages must support message passing. In this thesis, Scala is chosen because Scala has

native support for the Actor model through Akka actor library. Detailed discussions on choosing a target

language can be found in Section 6.5.

Designing CSL from scratch is another option. In this scenario, CSL code would still need to be translated

into a target language. In this sense, I do not see any advantage of designing CSL from scratch, whereas,

there are a number of disadvantages. For example, we have to define CSL from the very basic elements, such

as identifiers, literals, operators, and types, etc. Statements should be defined and a library for manipulating

list should be implemented. These works can be avoided by having CSL styled after Scala.

Restrict Arbitrary Code In an effort to restrict the behavior of outlets and handlers to communication

handling, loops are discouraged by the absence of support in CSL. More specifically, loops are avoided

in the definitions of behaviors and communications so that separation of concerns is achieved. However,

in some scenarios, repeated activities may be useful, which can be realized through triggers rather than

functionally triggered loops, which are too powerful to be included in CSL. Triggers can send messages to

72

a communication which subscribes to them. Subscribing to a trigger makes a communication encapsulate

the trigger in it. Figure 6.5 shows a time trigger encapsulated in a communication. Such a time trigger can

periodically send a message to a subscribing communication potentially leading to periodic communication

activity. In the prototype implementation, although I have implemented the subscribe method in CSL

class, triggers for time, location, noise etc. have not yet been implemented.

Figure 6.5: Trigger Example: Time

However, determined programmers could find indirect ways to include loops into a communication. An

example of indirect loop can be found in Figure 4.11. For some scenarios that require functionally triggered

loops, loops can be inserted into communications by programming them using Scala directly. The decision

of disallowing loops in CSL may be imperfect. I would like to investigate the ramifactions of allowing loops

in CSL in my future work.

Syntactic Sugar sendm, tell, tellm, multiSend, and multiTell are essentially syntactic sugar and

can all be implemented using send. For example, sendm can be realized by repeatedly using send to send

a message to a list of recipients; tell can be implemented using two sends to separately send a message

and the sender’s name; multiSend can be implemented by simultaneously iterating the recipient list and

the data list and sending messages picked from the latter list to recipients chosen from the former list.

6.3 Examples

This section presents examples to show the expressiveness of CSL. Section 6.3.1 gives examples for defining

behaviors. Section 6.3.2 describes a number of exemplary communications.

6.3.1 Behaviors

The examples presented in this section are forwarder, filter, counter, applier, timer, router, sequencer, aggre-

gator, and aggregatorOneOff.

Forwarder

Figure 6.6 defines the behavior of a forwarder on the arrival of a message. A forwarder has targets.

When receiving a message msg, a forwarder just simply sends the message to its targets, which is defined in

receive method and realized through sendm.

73

1 behavior forwarder(targets): {
2 receive(msg) = {
3 sendm(targets, msg);
4 }
5 }

Figure 6.6: Behavior: Forwarder

Filter

Figure 6.7 defines filter, which has two parameters: targets and a function cond, which has the type of

Any => Boolean. It is used to check whether an incoming message satisfies its defined condition. On the

arrival of a message, it first is checked against cond. If it returns true, the message is sent to targets;

otherwise, filter ignores the message.

1 behavior filter(targets, val cond: Any => Boolean): {
2 receive(msg) = {
3 if (cond(msg)) {
4 sendm(targets, msg);
5 }
6 }
7 }

Figure 6.7: Behavior: Filter

Counter

counter (Figure 6.8) counts the number of received messages. On receiving a message, a counter sends targets

the number of received messages so far, which is the value of a local variable i.

1 behavior counter(targets): {
2 var i = 1;
3 receive(msg) = {
4 sendm(targets, i);
5 i = i + 1;
6 }
7 }

Figure 6.8: Behavior: Counter

Applier

Figure 6.9 defines applier. When receiving a message, it applies a programmer-provided function f having

the type of Any => Any to the message and then sends the result to its targets.

Timer

Figure 6.10 defines timer which delays every received message for time milliseconds and then sends it to

targets.

74

1 behavior applier(targets, val f: Any => Any): {
2 receive(msg) = {
3 sendm(targets, f(msg));
4 }
5 }

Figure 6.9: Behavior: Applier

1 behavior timer(targets, val time:Int): {
2 receive(msg) = {
3 delay(time);
4 sendm(targets, msg);
5 }
6 }

Figure 6.10: Behavior: Timer

Selector

selector is defined in Figure 6.11. It has a programmer-provided function select, which returns a list of

recipients from targets based on a received message msg. Once a list of recipients is obtained, the received

message is sent to those recipients. In this sense, different messages may be sent to different recipients, which

is programmer-defined in function select. The concept of selector is similar to the concept of routing in

Akka.

1 behavior selector(targets, val select: (Any, List[ActorRef]) => List[ActorRef]): {
2 receive(msg) = {
3 sendm(select(msg, targets), msg);
4 }
5 }

Figure 6.11: Behavior: Selector

Sequencer

Figure 6.12 defines sequencer which sends the first received message to the first participant in the list parts,

waits for a response, sends the response to the second participant, and so forth until a response from the

last participant is received and finally it is sent to a list of targets. After it is done, it discards any further

incoming messages.

Aggregator

aggregator (Figure 6.13) accepts two functions: cond used to determine whether the aggregator should stop

receiving messages, and aggr used to aggregate a result from all received messages so far. On arrival of a

message, it is put into the aggregator’s local message list msgs. Then the aggregator use cond to check the

termination condition. If cond returns true, a result is aggregated from msgs and is sent to targets. The

local message list msgs is emptied in order to be reused for next aggregation if any.

75

1 behavior sequencer(targets, val parts: List[ActorRef], val orders: List[Int]): {
2 var next = 0;
3 var done = false;
4

5 receive(msg) = {
6 if (done == false) {
7 if (next == size(parts) - 1) {
8 sendm(targets, msg);
9 done = true;

10 } else {
11 send(get(parts, next), msg);
12 next = next + 1;
13 }
14 }
15 }
16 }

Figure 6.12: Behavior: Sequencer

1 behavior aggregator(targets, val cond: List[Any] => Boolean, val aggr: List[Any] => Any): {
2 var msgs = List[Any]();
3 receive(msg) = {
4 msgs = append(msg, msgs);
5 if (cond(msgs)) {
6 sendm(targets, aggr(msgs));
7 empty(msgs);
8 }
9 }

10 }

Figure 6.13: Behavior: Aggregator

AggregatorOneOff

aggregatorOneOff (Figure 6.14) is similar to aggregator except it only aggregates and sends a result once.

This behavior is used in SOM2M.

1 behavior aggregatorOneOff(targets, val cond: List[Any] => Boolean, val aggr: List[Any] => Any): {
2 var msgs = List[Any]();
3 var sent = false;
4 receive(msg) = {
5 if (sent == false) {
6 msgs = append(msg, msgs);
7 if (cond(msgs)) {
8 sendm(targets, aggr(msgs));
9 sent = true;

10 }
11 }
12 }
13 }

Figure 6.14: Behavior: One-Off Aggregator

6.3.2 Communications

This section presents CSL code for a number of communications presented in Chapter 5. Also, I present two

examples for compositions: one for input merge and another for output merge. The example for output-input

merge can be found in Chapter 7.

76

Broadcaster

A broadcaster enables a set of computations participants to send messages to another set of computations

recipients. Figure 6.15 shows the CSL code.

Broadcaster has two attributes: participants are the senders and recipients are the message

targets, one output outlet out targeting recipients, and one input outlet in targeting out. When such

communication is launched, it notifies participants the name of the input outlet, so that they can use it

to send messages. Upon receiving a message at its input outlet, the communication forwards it to its output

outlet, which, in turn, forwards the message to recipients.

1 communication Broadcaster {
2 attributes: {
3 recipients: List[ActorRef];
4 participants: List[ActorRef];
5 }
6 output outlet: out(forwarder(recipients));
7 input outlet: in(forwarder(out));
8 init: {
9 sendm(participants, in);

10 }
11 }

Figure 6.15: Communication: Broadcaster

Router

A router communication described in Figure 6.16 selectively sends messages based on received messages. It

defines two sets of recipients recipients1 and recipients2. participants are senders and select

is a provided function. It has two output outlets out1 and out2, one handler chooser, and one input outlet

in. The two output outlets have the behavior of forwarder and target recipient1 and recipient2,

respectively. The handler has the behavior of selector, which dynamically determines its target between

out1 and out2 based on received messages. The select criteria is defined in function select, which chooses

a list of recipients defined in List[ActorRef] based on a received message that has type of Any.

1 communication Router {
2 attributes: {
3 recipients1: List[ActorRef];
4 recipients2: List[ActorRef];
5 participants: List[ActorRef];
6 select: (Any, List[ActorRef]) => List[ActorRef];
7 }
8 output outlet: out1(forwarder(recipients1));
9 output outlet: out2(forwarder(recipients2));

10 handler: chooser(selector(List(out1, out2), select));
11 input outlet: in(forwarder(out1));
12 init: {
13 sendm(participants, in);
14 }
15 }

Figure 6.16: Communication: Router

77

Similar to a broadcaster communication, a router informs participants of the existence of the input

outlet in its init method.

Multi-Origin Many-to-Many

The CSL version of MOM2M communication in Section 5.3 is defined in Figure 6.17. From the definition,

a MOM2M has four attributes: recipients, which is the target of the output outlet, participants

are message senders, and cond and aggr which are used by the aggregator behavior. The input outlet in

targeting the handler aggregator which has the behavior of aggregator and targets the output outlet out.

1 communication Mom2m {
2 attributes: {
3 recipients: List[ActorRef];
4 participants: List[ActorRef];
5

6 cond: List[Any] => Boolean;
7 aggr: List[Any] => Any;
8 }
9 output outlet: out(forwarder(recipients));

10 handler: aggregator(aggregator(out, cond, aggr));
11 input outlet: in(forwarder(aggregator));
12 init: {
13 sendm(participants, in);
14 }
15 }

Figure 6.17: Communication: Multi-Origin Many-to-Many

Single-Origin Many-to-Many

The CSL version of Single-Origin Many-to-Many communication is defined in Figure 6.18. In the code, I

assume behavior spoutOneOff has been defined.

1 communication Som2m {
2 attributes: {
3 recipients: List[ActorRef];
4 participants: List[ActorRef];
5 query: List[ActorRef];
6 content: Any;
7

8 cond: List[Any] => Boolean;
9 aggr: List[Any] => Any;

10 }
11 output outlet: out(spoutOneOff(recipients, content));
12 handler: aggregator(aggregatorOneOff(out, cond, aggr));
13 input outlet: in(forwarder(aggregator));
14 init: {
15 tellm(in, participants, query);
16 }
17 }

Figure 6.18: Communication: Single-Origin Many-to-Many

Composition – Input Merge

I present an example (Figure 6.19) which composes three broadcasters. The composed communication is ins.

The three composing communications are c1, c2, and c3, and they are merged at their input outlets declared

78

as outlets. The handler merging them together has the behavior of forwarder and targets the merged

outlets. Note that the handler can have a different behavior, such as filter and timer, etc. The composed

communication has four attributes: participants are communicating parties which send messages through

the composed communication, recipients1, recipients2, and recipients3 are the recipients for the

three composing communications, respectively. In the init method, the participants attribute of each

of the three broadcasters is set to null because the participant is the handler created for the merge and will

be available at the time of merging. The merge occurs at line 25. Line 27 notifies senders the input outlet of

the composed communication so that they can use it to send messages.

1 communication ins {
2 comms: {
3 c1: Broadcaster;
4 c2: Broadcaster;
5 c3: Broadcaster;
6 }
7 composition: {
8 outlets: List(c1.in, c2.in, c3.in);
9 behavior: {

10 b: forwarder(outlets);
11 }
12 }
13 attributes: {
14 participants: List[ActorRef];
15 recipients1: List[ActorRef];
16 recipients2: List[ActorRef];
17 recipients3: List[ActorRef];
18 }
19

20 init: {
21 c1.attrs(Map("recipients"->recipients1,"participants"->null));
22 c2.attrs(Map("recipients"->recipients2,"participants"->null));
23 c3.attrs(Map("recipients"->recipients3,"participants"->null));
24

25 Inputs(List(c1, c2, c3), outlets, b);
26

27 sendm(participants, this.getInlets);
28 }
29 }

Figure 6.19: Composition Example: Input Merge

Composition – Output Merge

The composed communication outs defined in Figure 6.20 composes three broadcasters at their output

outlets. The three composing communications are c1, c2, and c3, and they are merged at their output

outlets declared as outlets. The handler merging them together has the behavior of forwarder. Note that

the handler can have a different behavior, such as filter and timer, etc. The composed communication has four

attributes: participants1, participants2, and participants3 are senders which send messages

through the composed communication, recipients is the recipients of the composed communications. In

particular, participants1 use the input outlet of c1 to send messages, participants2 use the input

outlet of c2 to send messages, and participants3 use the input outlet of c3 to send messages,. In

the init method, the recipients attribute of each of the three broadcasters is set to null because the

recipient is the handler created for the merge and will be available at the time of merging. The merge occurs

79

at line 25. Lines 27-29 notify senders the input outlet of the composed communication so that they can use

it to send messages.

1 communication outs {
2 comms: {
3 c1: Broadcaster;
4 c2: Broadcaster;
5 c3: Broadcaster;
6 }
7 composition: {
8 outlets: List(c1.out, c2.out, c3.out);
9 behavior: {

10 b: forwarder(null);
11 }
12 }
13 attributes: {
14 recipients: List[ActorRef];
15 participants1: List[ActorRef];
16 participants2: List[ActorRef];
17 participants3: List[ActorRef];
18 }
19

20 init: {
21 c1.attrs(Map("recipients"->null,"participants"->participants1));
22 c2.attrs(Map("recipients"->null,"participants"->participants2));
23 c3.attrs(Map("recipients"->null,"participants"->participants3));
24

25 Outputs(List(c1, c2, c3), outlets, b, recipients);
26

27 sendm(participants1, c1.in);
28 sendm(participants2, c2.in);
29 sendm(participants3, c3.in);
30 }
31 }

Figure 6.20: Composition Example: Output Merge

6.4 Translator

I build a translator which translates CSL code into executable pure Scala code by carrying out textual

substitution on CSL code. The translator consists of two separate applications: one is for translating behavior

classes and the other is for translating communication classes. After translation, those classes can be used as

Scala classes. In order to compile and execute the transferred code, the translated behavior classes must be

put into agents.envelope.behavior package, and the translated communication classes must be put

into agents.envelope.communication package.

Programmers can develop their own translator so as to convert CSL code to the code in the form of other

programming languages so that they can use existing library of communications defined in CSL, such as

Broadcaster, Mom2m, and Som2m, etc. Because of translators, an application developer can be dedicated to

writing CSL code, which can be translated to various programming language code and thus can be used in

different applications.

80

6.5 Summary

This chapter presents CSL, a specification language with the intention of restricting communications from

including arbitrary code. Particularly, CSL does not allow loops in the definitions of communications and be-

haviors. Moreover, only statements and expressions defined CSL can be used. Through these two restrictions,

CSL discourages arbitrarily complex code. The purpose of preventing arbitrary code is to prevent communi-

cations from being used to carry out computations. Otherwise, if communications can have arbitrary code,

they will have the same capability as computations, which leads to mixing of concerns.

In this thesis, I use CSL to program interActors. As we have seen in Chapter 5, interActors can be

programmed using Scala directly. In addition to Scala, interActors can be implemented using any language

that supports message passing. It does not matter whether the message passing scheme is supported na-

tively by the implementation language itself or through an external library and whether message passing is

synchronous or asynchronous. For example, Microsoft has developed a library called Asynchronous Agents

Library [57] for Visual C++. Computations can communicate with each other using this library. MPI is a

message passing library and has implementations written in C, C++, and Fortran. Therefore, C and Fortran

can be used to implement interActors. I expect that it should be possible to implement interActors using

synchronous communication. This needs closer examination.

In the future, I would like to extend CSL with support of inheritance. That is, a communication can

be defined as a subclass of another communication. Through subclassing, existing attributes, outlets, and

handlers can be reused. Another enhancement to CSL could be a grammar checker, which checks whether

CSL code violates the syntax of CSL. This would make it possible to identify grammar errors at the early

stage of code development.

81

Chapter 7

Evaluation

This chapter evaluates our approach based on interActors. This work is a theoretical work and proposes

a new programming model for separating processes’ communication concerns from their functional concerns.

Therefore, I evaluate interActors in terms of programmability, modularity, and reusability. Specifically,

programmability is evaluated through comparison with Reo, a leading fundamental work on separation of

interactions from computations. Modularity and reusability are evaluated through case studies, which also

demonstrate programmability of interActors. Another purpose to do case studies is to show that interActors

have potentials to be applied to a variety of application domains.

This chapter is organized as follows: Section 7.1 compares interActors with Reo, a leading interaction

model by looking at solutions to particular communication problems using the two approaches. Section 7.2

presents three case studies to illustrate interActors’ expressive power: gravitational n-body simulation, web

services orchestration, and crowd-sourced services. Section 7.3 summarizes the discussions.

7.1 Comparison with Reo

This section compares interActors with Reo, a leading interaction model, which is a domain-specific lan-

guage for programming and analyzing coordination protocols. Particularly, I compare interActors with an

implementation of Reo described at [68]. I use the two examples presented in Chapter 1: Single-Origin Many-

to-Many (SOM2M) and US presidential election. For each, I first show how a Reo connector is constructed

and is used, and how an existing Reo connector can be reused. Then, I compare this with the construction

and reuse of an interActors communication.

7.1.1 Problem: Single-Origin Many-to-Many

Here, I first build a Reo connector and use it to implement a Single-Origin Many-to-Many communication.

Next, I develop a solution using interActors. I define a communication for this problem. To simplify this

example, I assume that there are only three participants.

82

Reo solution

An implementation of the SOM2M communication using Reo is illustrated in Figure 7.1, in which we assume

the use of a new channel type which we call aggregator which encapsulates a computational component

(processes are called components in Reo literature). Although aggregation mechanisms can be achieved

through embedding arbitrary computational components [12], the arbitrariness puts Reo on the slippery

slope of mixing functional concerns with communication concerns. In the figure, labelled rectangles are the

processes: the initiator and three participants p1, p2, and p3, respectively. The dashed rectangle is the Reo

connector, which is composed from five channels: ab, cd, ef, gh, and mn, respectively.1 Each channel has

two ends. Every channel end coincides with exactly one node, on which multiple channel ends may coincide.

The circles are nodes. A node can be referred to by any channel end coincident on it. For example, either b

or e can be used to refer to the node where the two ends meet. The behavior of the aggregator is to collect

and aggregate the responses from participants and produce a boolean value determining whether the draft

message should be sent. The gray circle in the connector broadcasts messages from the communication’s

initiator to participants.

Figure 7.1: Reo Solution for SOM2M

The processes interact with each other through the connector, which implements the communication

protocol between them. The initiator sends a request through node a to the three participants, which

connect to the connector at node d, f, and h, respectively. After receiving a request, the three participants

send their responses to node n that is also connected to the three participants. The aggregator channel

collects responses and aggregates a boolean value and emits it through node m, which the initiator connects

to. Upon receiving the boolean result, the initiator makes a decision on whether the draft message should

be sent or discarded.

The pseudocode for building the connector is shown in Figure 7.2. The code first creates individual

channels, and then builds the connector by joining channel ends together. To use this connector, each

process must connect itself to it by calling the connect primitive. In order to connect to a connector, a

process must know the name of the channel end.

1For more information on Reo channels and connectors, please refer to Section 2.3 in Chapter 2.

83

1 // create channels
2 create channel ab;
3 create channel cd;
4 create channel ef;
5 create channel gh;
6 create channel mn;
7 // construct the connector
8 join channel ends b and c;
9 join channel ends b and e;

10 join channel ends b and g;

Figure 7.2: Code for Building Reo SOM2M Connector

interActors solution

Using interActors, the initiator creates an instance of Som2m defined in Figure 7.3, initializes the communi-

cation by setting its attributes using setAttr, and launches it. The Scala code for doing this is shown in

Figure 7.4. In the code, the list of recipients recipients and the list of participants parts are dynamic

and are determined at run-time. Likewise, the query message query, the condition function cond, and the

aggregation function aggr are provided by applications and thus are determined at run-time.

1 communication Som2m {
2 attributes: {
3 recipients: List[ActorRef];
4 participants: List[ActorRef];
5 query: List[ActorRef];
6 content: Any;
7

8 cond: List[Any] => Boolean;
9 aggr: List[Any] => Any;

10 }
11 output outlet: out(spoutOneOff(recipients, content));
12 handler: aggregator(aggregatorOneOff(out, cond, aggr));
13 input outlet: in(forwarder(aggregator));
14 init: {
15 tellm(in, participants, query);
16 }
17 }

Figure 7.3: Communication: Single-Origin Many-to-Many

1 val som2m = new Som2m(context)
2 som2m.setAttr(Map("recipients"->recipients, "participants"->parts, "query"->query,
3 "content" -> draft, "cond" -> cond, "aggr" -> aggr))
4 som2m.launch()

Figure 7.4: Code for Initiating and Launching SOM2M

Comparison

We compare interActors and Reo from the following perspectives:

Code Scalability The Reo solution is only for three participants. A larger number of participants would

require a proportionately higher number of lines of code for creating and join channels. In other words, the

number of lines of code for building the connector could be O(n). In comparison, the number of participants

84

in the interActors solution is simply specified as a list at launch time, and thus the number of participants

is determined at run time. Therefore, the number of lines of code for using a communication is O(1).

Reusability First, the connector constructed in Reo solution cannot be easily reused because once con-

structed, Reo connectors offer static protocols. In other words, the number of channels and the number of

nodes that can be connected by processes are fixed. In the connector in Figure 7.1, processes can connect to

the connector at six nodes: a, d, f , h, m, and n. Among them, d, f , and h are used to notify participants.

If, for example, a new participant is introduced, this connector cannot accommodate the new situation, and

thus, a new connector must be constructed. On the contrary, Som2m can be easily reused by just simply

resetting its attributes through setAttr method. Second, the aggregator channel in the Reo solution is

very specific to this problem, with the termination policy (for instance) hard-coded. In other words, this

channel cannot be reused for a problem that requires a different aggregation mechanism. In comparison, the

communication in interActors solution is parametrized with aggregation functions, which can be specified at

run-time, allowing for customization and reuse. For example, suppose the application uses majority policy

first, and later on, the application requires to use unanimous authorized policy. For Reo, the existing con-

nector does not meet the requirement and a new connector needs to be built; for interActors, programmers

just pass a different condition function and a different aggregation function.

Modularity If the channels in the Reo solution are created and connected to the processes by one of the

four processes (i.e., the initiator and the three participants), a mixing of concerns would occur. To avoid

that, it would be better to have an external process create the channels. However, this would add more

complexity to the system. Conversely, we encapsulate this concern into a single communication – Som2m,

which is instantiated from a communication class that is from a communication library and the library can

be easily extended by adding more communication classes.

7.1.2 Problem: US Presidential Election

Figure 7.5 illustrates the four levels in a US election. At each polling station, a subset of eligible voters vote.

Each vote can be converted into a list with 0s for all but one of the candidates, who receives 1. The polling

station operates from a start time to a finish time, eventually sending the list of sums of all the votes to the

county level.

At the county level, vote totals are received from each of polling stations in the county. These totals are

aggregated as they arrive, and once all stations have reported, the aggregated is reported to the state level.

Partial results could be sent to media as well for a more gripping experience.

At the state level, similarly, county totals are received and aggregated; once all county totals have been

received, the states electoral college votes are awarded to the winner, and the results are sent out to the

national level. Again, partial totals could be sent to media.

Finally, at the national level, electoral college votes received from the states are aggregated until the total

number of electoral college votes for one of the candidates reaches 270, at which time the result is announced.

85

Figure 7.5: US Presidential Election

Reo Solution

To solve this problem using Reo, each voter is required to connect to a polling station that requires a

channel to connect to the county it belongs to. Each county and state also requires a channel to connect

to upper levels. We can build connectors for polling stations, counties, states, and the nation, respectively,

and then connect these connectors to build a larger connector for the problem. Because polling stations,

counties, states, and the nation may use different aggregation mechanism, at least, we need four types of

Reo connectors. In the best-case scenario (Figure 7.6), these connectors can be reused. In other words, the

connector created for polling stations can be used by all polling stations, the connector created for counties

can be used by all counties, and so on. In the worst-case scenario, these connectors cannot be reused and we

have to create a different type of connector for each polling station, county, state, and nation. This will lead

to a large number of types of connectors.

1 create a connector type named pc for polling stations;
2 create a connector type named cc for counties;
3 create a connector type named sc for states;
4 create a connector type named nc for nation;
5

6 instantiate a connector for polling station 1 from pc
7
8 instantiate a connector for county 1 from cc
9

10 instantiate a connector for state 1 from sc
11
12 instantiate a connector for nation from nc
13

14 join polling station 1 to county 1
15
16 join county 1 to state 1
17
18 join state 1 to nation
19

Figure 7.6: Code for Constructing a Connector for US Election

Furthermore, mechanisms such as making decisions when the result should be reported to the upper levels

and how the results are aggregated can be implemented by embedding components (Reo’s term for computa-

86

tions) in the connector. Again, although decision-making and aggregation mechanisms can be implemented

by embedding components, Reo introduces arbitrariness to connectors and thus makes the boundary between

communications and processes blur.

interActors Solution

The types of individual communications we need for implementing this election are special cases of MOM2M.

This is the situation in which a number of parties want to send a collective message to some recipient(s). This

type of a communication occurs naturally in a variety of scenarios, such as at mass celebrations, protests, etc.

However, for it to happen, some type of a setup has to exist – such as a public square – where the individuals’

messages can naturally aggregate into a group message. The communications required for nation, states,

counties, and polling stations are slightly different from MOM2M, because each of them aggregates votes

once and sends the aggregated results to its upper level once. For the national level, its upper level is to

announce the election result to the public. Further, polling needs to end at some point in time, rather than

wait until all messages have been received. Therefore, communications for polling stations are different from

communications for the other three levels.

Figure 7.7 shows how this type of a communication can be programmed in CSL. Mom2mOneOff shows the

communication code for the county, state, and national levels and Mom2mTimer shows the communication

code for the polling station levels. The only difference between the two communication classes is the behaviors

of their handlers. Mom2mOneOff’s handler has the behavior of aggregatorOneOff but Mom2mTimer’s

handler has the behavior of aggregatorTimer.

aggregatorTimer is defined in Figure 7.8. The timed aggregator is similar to aggregatorOneOff

defined in Figure 6.14. The only difference is that the timed aggregator checks the type of received messages.

That is, once receiving a message, the timed aggregator checks if the message has the type of Time. If it

does, the timed aggregator does not insert the message to its message list.

To construct an election communication requires composing the needed Mom2mOneOff and Mom2mTimer

communications, appropriately parametrized with cond and aggr functions using provided attribute values.

Figure 7.9 shows snippets of the code for composing polling station, county, state, and national communica-

tions to build an election communication. The communication for polling stations is created by instatiating

Mom2mTimer communication type and the communication for counties, state, and nation is created by in-

stantiating Mom2mOneOff communication type. The composing communications are declared, and then the

required output-input merge bindings for the composition are specified. Attributes are defined. Next, the init

function is provided, which first customizes each of the Mom2mOneOff and Mom2mTimer communications

by setting its attributes – cond and aggr functions as well as recipients and participants lists as

applicable – and then calls the OutIn composition primitive with the required bindings. Finally, the

participants of the polling station level communications (i.e., the voters) are sent the names of the stations’

input outlets to send their votes.

87

1 communication Mom2mOneOff {
2 attributes: {
3 recipients: List[ActorRef];
4 participants: List[ActorRef];
5

6 cond: List[Any] => Boolean;
7 aggr: List[Any] => Any;
8 }
9 output outlet: out(forwarder(recipients));

10 handler: aggregator(aggregatorOneOff(out, cond, aggr));
11 input outlet: in(forwarder(aggregator));
12 init: {
13 sendm(participants, in);
14 }
15 }
16

17 communication Mom2mTimer {
18 attributes: {
19 recipients: List[ActorRef];
20 participants: List[ActorRef];
21

22 cond: List[Any] => Boolean;
23 aggr: List[Any] => Any;
24 }
25 output outlet: out(forwarder(recipients));
26 handler: aggregator(aggregatorTimer(out, cond, aggr));
27 input outlet: in(forwarder(aggregator));
28 init: {
29 subscribe(time_trigger);
30 sendm(participants, in);
31 }
32 }

Figure 7.7: Code: One-Off MOM2M and Timed MOM2M

Condition and aggregation functions for polling station, county, state, and nation are shown in Figure 7.10.

cond p defines the condition function for polling stations. For a particular station, it returns true when the

station closes; otherwise, false. We assume that function time() returns the current time in milliseconds.

cond function defines condition function for county and state. It returns true when the number of received

aggregation messages equals to the required number required. cond n function defines condition function

for nation. It returns true as long as the number of electoral college votes for one candidate is greater than

or equal to 270. Ballot class is used to keep track of the number of votes (electoral college votes at national

level) for each candidate. Particularly, we use seq – an integer – to represent a candidate, and use no to

record the number of votes for the corresponding candidate. aggr pc defines the aggregation function for

polling station and county. It calculates the number of votes received for each candidate and returns the

aggregated result, which will be sent to the upper level. aggr st defines the aggregation function for state.

It returns the winner of a particular state with the number of electoral college votes for that state. aggr n

defines the aggregation function for nation. It computes the winner of the election.

A process can then use an election communication by instantiating it, setting its attributes, and finally

launching it as shown in Figure 7.11. Each passed condition function and aggregation function are defined

from an appropriate function defined in Figure 7.10. For example, cond st1 is defined as cond(required,

), where required is the number of counties in that particular state; aggr st1 is defined as aggr st(nc,

nev,), where nc is the number of candidates and nev is the number of electoral college votes that the

state has.

88

1 behavior aggregatorTimer(targets, val cond: List[Any] => Boolean,
2 val aggr: List[Any] => Any): {
3 var msgs: List[Any];
4 var sent = false;
5 receive(msg) = {
6 if (sent == false) {
7 if (msg.isInstanceOf[Time] == false) {
8 msgs = append(msg, msgs);
9 }

10 if (cond(msgs) || msg.isInstanceOf[Time] == true) {
11 sendm(targets, aggr(msgs));
12 sent = true;
13 }
14 }
15 }
16 }

Figure 7.8: Behaviors: Timed Aggregator

Comparison

Code Scalability and Reusability Now, compare this solution with the challenges in implementing such

an interaction using Reo. Particularly, a large number of different types of connector would need to be

created, which might be in proportion to the total number of polling stations, counties, states, and nation.

In contrast, for interActors, we only need two types of communications, Mom2mOneOff and Mom2mTimer.

Then we create communication objects for polling stations, counties, states, and nation by passing different

parameters.

Modularity The aggregations required for counting the votes, and the decisions about when votes should be

reported – which I argue belong on the communication side – would need to be placed inside the component

as processes (called components in Reo literature). This unrestricted placing of arbitrary computational

processes within a protocol, in our view, although necessary in Reo, shows that the model fails to adequately

separate communication and computation concerns. In contrast, in our approach, there is a principled

decision to treat limited types of message-handling related computational logic as a communication concern,

and only code strictly meeting that criterion is allowed in outlet and handler behaviors.

7.1.3 Discussion

I used two examples, SOM2M and US election, to compare interActors and Reo. Particularly, I have compared

them along three dimensions: code scalability, reusability, and modularity. To some extent, the comparisons

depend on how well the Reo systems have been designed. I have tried my best effort to make a fair comparison

between interActors and Reo by designing Reo solutions well. For each dimension, interActors has some

advantages over Reo. However, for applications involving a small number of communication participants

and when the number of participants is fixed, Reo may be a better choice, because it offers a graphical

programming interface and there are a number of channels at programmers’ disposal. One example of this

would be an alternator [10] which imposes an ordering on the flow of data from multiple source processes to

a destination process. The source processes alternately send a message to the destination process. When the

89

1 communication election {
2 comms: { // communications to be composed
3 national: Mom2mOneOff;
4 state1: Mom2mOneOff; state2: Mom2mOneOff; ...
5 county1: Mom2mOneOff; county2: Mom2mOneOff; ...
6 station1: Mom2mTimer; station2: Mom2mTimer; ...
7 }
8 composition: { // output-input compositions
9 bindings:List(

10 ...
11 (station1.out,county1.in, forwarder(county1.in)),
12 (station2.out,county1.in, forwarder(county1.in)));
13 ...
14 }
15 attributes: {
16 recipients: List[ActorRef];
17 participants1: List[ActorRef]; ...
18 cond_nation: List[Any] => Boolean;
19 cond_state1: List[Any] => Boolean; ...
20 cond_county1: List[Any] => Boolean; ...
21 cond_station1: List[Any] => Boolean; ...
22 aggr_nation: List[Any] => Any;
23 aggr_state1: List[Any] => Any; ...
24 aggr_county1: List[Any] => Any; ...
25 aggr_station1: List[Any] => Any; ...
26 }
27

28 init: {
29 // customize Mom2mOneOff and Mom2mTimer communications
30 national.attrs(Map("recipients"-> null, "participants"->null, "cond"-> cond_nation, "aggr"-> aggr_nation));
31

32 state1.attrs(Map("recipients"-> null, "participants"->null, "cond"-> cond_state1, "aggr"-> aggr_state1));
33 ...
34 county1.attrs(Map("recipients"-> null, "participants"->null, "cond"-> cond_county1, "aggr"-> aggr_county1));
35 ...
36 station1.attrs(Map("recipients"-> null, "participants"->participants1,
37 "cond"-> cond_station1, "aggr"-> aggr_station1));
38 ...
39

40 // compose
41 OutIn(List(national, state1, ... , county1,..., station1, ...), bindings);
42

43 // notify participants
44 sendm(participants1, station1.in);
45 sendm(participants2, station2.in);
46 ...
47 }
48 }

Figure 7.9: Election Communication

number of source processes is smaller than 4, Reo provides a better solution. When the number of source

processes is equal to or greater than 4, the number of lines of code for constructing an alternator grows fast

making interActors a better choice. Furthermore, in Reo, programmers can construct connectors by drawing

them. Reo also provides an animation tool which helps visualize how a particular connector works, leading

to easy of understanding the function of the connector.

Reo protocols are fixed, which means that the number of participants must be known a priori and makes

Reo a bad choice for reasoning about open systems. In contrast, interActors support dynamically evolving

protocols. New outlets and handlers can be created on the fly to meet changing communication requirements.

Additionally, interActors support conditional actions through behaviors. That is, a communication can be

completed or an action can be triggered without requiring responses from all senders. To achieve the same

effect using Reo, a process must be embedded into connectors. This arbitrariness puts Reo on the slippery

90

1 // cond function for Polling Station
2 def cond_p(expire:Time,l:List[Any]):Boolean= {
3 if (time() >= expire) {
4 true
5 } else {
6 false
7 }
8 }
9 // cond function for county and state

10 def cond(required: Int, l: List[Any]): Boolean = {
11 if (l.length == required) true
12 else false
13 }
14 // cond function for nation
15 def cond_n(required: Int, l: List[Any]): Boolean = {
16 var ballots = List.fill(nc)(0)
17 l.asInstanceOf[List[Ballot]].foreach(x =>
18 ballots=ballots.updated(x.seq,ballots(x.seq)+x.no))
19 var terminate = false
20 ballots.foreach(x => {
21 if (x.no >= 270) {
22 terminate = true
23 break;
24 }
25 })
26 terminate
27 }
28

29 class Ballot (s: Int, n: Int) {
30 val seq = s
31 val no = n
32 }
33 // aggr function for polling station and county
34 // nc: number of candidates
35 def aggr_pc(nc: Int, l: List[Any]): Any = {
36 var ballots = List.fill(nc)(0)
37 l.asInstanceOf[List[Ballot]].foreach(x =>
38 ballots=ballots.updated(x.seq,ballots(x.seq)+x.no))
39 ballots
40 }
41 // aggr function for state
42 // nc: number of candidates
43 // nev: number of electoral votes
44 def aggr_st(nc: Int, nev: Int, l: List[Any]): Any = {
45 var ballots = List.fill(nc)(0)
46 l.asInstanceOf[List[Ballot]].foreach(x =>
47 ballots = ballots.updated(x.seq, ballots(x.seq)+x.no)
48)
49 var m = 0
50 var seq = 0;
51 ballots.foreach(x =>
52 if (x.no > m) {
53 m = x.no
54 seq = x.seq
55 }
56)
57 val b = new Ballot(seq, nev)
58 b
59 }
60 // aggr function for nation
61 // nc: number of candidates
62 def aggr_n(nc: Int, l: List[Any]): Any = {
63 var ballots = List.fill(nc)(0)
64 l.asInstanceOf[List[Ballot]].foreach(x =>
65 ballots = ballots.updated(x.seq, ballots(x.seq)+x.no)
66)
67 var m = 0
68 var winner = 0;
69 ballots.foreach(x =>
70 if (x.no > m) {
71 m = x.no
72 winner = x.seq
73 }
74)
75 winner
76 }

Figure 7.10: Cond and Aggr Functions

91

1 val e = new election();
2

3 e.setAttr(Map("recipients"->r,
4 "participants1"->parts1,"cond_nation"->cond_n, "aggr_nation"->aggr_n,
5 "cond_state1"->cond_st1, "cond_county1"->cond_c1, "cond_station1"->cond_s1,
6 "aggr_state1"->aggr_st1, "aggr_county1"->aggr_c1, "aggr_station1"->aggr_s1,
7 ...));
8

9 e.launch();

Figure 7.11: Creating and Launching an Election Communication

slope of mixing functional concerns with communication concerns, blurring the boundary between processes

and communications.

For execution, Reo protocols specified in a graphical language need to be compiled into a language, and

scalability of the executable is a significant concern [43]. In interActors, communications can be implemented

in CSL, which is essentially a restricted version of the Scala programming language. CSL code has to be

translated into Scala code for execution. Communications can also be coded directly in Scala; however, CSL

makes it both easier, by dispensing with some of the boilerplate, as well as restricts arbitrary computations

from being included in a communication.

7.2 Case Studies

This section presents three case studies: gravitational n-body simulation, web services orchestration, and

crowd-sourced services. Gravitational n-body simulation presented in Section 7.2.1 is solved using two ap-

proaches: using one simple communication and using one composed communication. Interestingly, the two

approaches (or more precisely, the two communications) are identical to application programmers who use

them. An example of web services orchestration is introduced in Section 7.2.2. I use a composed communica-

tion including four component communications to tackle the problem. All four component communications

are instances of the same communication. The solution promotes modularity and reusability. I demonstrate

that communications can be used as long-lived services in Section 7.2.3 through a crowd-sourced service for

restaurant recommendation.

7.2.1 Gravitational n-Body Simulation

Suppose we have a large group of celestial objects, such as stars, planets, asteroids, and dust clouds in

a galaxy, interacting with each other by exerting gravitational pull forces. The problem is to predict the

position and velocity of every individual body so as to simulate the evolution of the galaxy. Each body has

a mass and an initial position and velocity. Forces exerted on a body by other bodies cause it to move to

a new position and to have a new velocity. Usually, the simulation includes a large number of iterations.

In each iteration, we calculate the exerted forces by other bodies for every body, update their positions and

velocities.

92

In a manager-workers implementation of this simulation [7], a number of worker agents are made respon-

sible for computing and tracking the position and velocity of a block of bodies, so that the total number

of bodies is roughly evenly divided between all agents. Because each worker agent exactly has one block of

bodies, the number of blocks is the same as the number of workers. Suppose there are w workers, and thus

the n bodies are divided into w blocks. Each worker carries out a task that is a pair and has the form (i, j)

where 1 ≤ i, j ≤ w. The task is to calculate the forces between the bodies in the two blocks. Tasks are

generated by a manager agent. For each simulation step, the following process is executed:

1. The manager agent creates a list of tasks (each a pair of blocks of bodies).

2. Each worker obtains a task from the manager. Once a task is assigned to a worker, the manager removes

the task from the list.

3. Workers, after receiving a task, calculate the forces between the bodies in the two blocks indicated by

the task

4. By the time there is no task in the list, each worker has computed and locally collected forces for several

pairs of blocks of bodies. Although all forces have been calculated, they are not known by all worker

agents. Therefore, workers share those forces with others by sending their own copy of forces to all

other workers.

5. Once receiving all forces calculated by all other workers, each worker aggregates these forces with its

own copy of forces to get the total forces exerted on the bodies in its own block. Based on the aggregated

forces, each worker computes new positions and velocities for its own block of bodies.

6. Once finishing computing new positions and velocities, each worker, again, shares new positions and

velocities of its own block of bodies with all other workers.

7. Upon receiving updated positions of velocities of a block of bodies, each worker aggregates them with

the positions and velocities of its local copy of bodies.

The above process repeats until the simulation steps have been done. In this implementation, to minimize

the length of messages, each worker has a local copy of the positions, velocities, and masses of all bodies.

Figure 7.12 illustrates the above process. In the figure, we suppose there are three workers. Therefore, the

bodies are divided into three blocks. The circles are agents as labelled. The lines between agents represent

communications between them. The curve lines mean computations that agents execute. The manager

creates a bag of tasks. Each task has the form of (i, j), where 1 ≤ i, j ≤ 3. In other words, there are total

six tasks: (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3).

93

Figure 7.12: n-body Simulation – Manager-worker Implementation

Analysis

The worker’s code in the manager-worker implementation is shown in Figure 7.13. In the code, we suppose

there are n workers, w is the identity of the wth worker, and the manager sends a (0, 0) to indicate that the

bag of tasks is empty. The number of simulation steps is STEPS.

By meticulously studying the manager-worker implementation, we find that aggregation tasks (i.e., force

aggregation and position and velocity aggregation) should be treated as parts of communication, and thus,

should be separated from workers. That is, the steps from 4 to 7 in the right side of Figure 7.12 are separated

and treated as communications. Workers, consequently, only focus on calculating forces and positions and

velocities. Our approach: use a communication to carry out the aggregation tasks and exchange forces and

positions and velocities. Once finishing calculating forces or positions and velocities, each worker sends the

result to the communication, which is responsible for aggregating and then sending the aggregated result to

workers. Figure 7.14 illustrates this idea. In the figure, to make the figure simple and clean, I abstract away

the outlets of the communication.

Now, I present interActors solutions. The problem is solved in two ways: using one simple communication

and using one composed communication. In these solutions, we still use a manager to generate tasks. However,

we transfer the aggregation tasks from the workers to a communication.

Solution 1: Using a Simple Communication

Figure 7.15 shows the solution using one simple communication, which has one input outlet, two handlers, and

two output outlets. Once workers finish calculating forces or new PVs (Positions and Velocities), they send

their local copies to the communication’s input outlet. The input outlet executes the behavior selector,

which selectively sends received messages to either the force handler if the received message is a force, or

the PV handler if the received message is a PV. The force handler aggregates forces and the PV handler

94

1 task (int block1, int block2);
2

3 process Worker[w = 1 to n] {
4 for (s = 1 to STEPS) {
5 while (true) {
6 t = get a task from the manager;
7 if (t.block1 == 0) break;
8 calculate forces;
9 }

10 for (i = 1 to n st i != w) {
11 send local forces to ith worker;
12 }
13 for (i = 1 to n st i != w) {
14 receive forces from ith worker;
15 aggregate received forces to local forces;
16 }
17

18 calculate positions and velocities base on the aggregated forces;
19 for (i = 1 to n st i != w) {
20 send local bodies to ith worker;
21 }
22 for (i = 1 to n st i != w) {
23 receive bodies from ith worker;
24 move bodies;
25 }
26 }
27 }

Figure 7.13: Worker Code in Manager-worker Implementation

Figure 7.14: Solving n-body Simulation Using a Communication

aggregates positions and velocities of the bodies. After the aggregation is done, the handlers send the result

to their corresponding output outlets, which, in turn, forward it to workers.

Figure 7.16 defines this communication named nbodys in CSL. nbodys has six attributes, namely,

workers represents a list of workers; condf and condpv are used to determine whether the force handler

should stop receiving forces and whether the PV handler should stop receiving positions and velocities,

respectively; aggrf and aggrpv aggregate forces and PVs, respectively; select is used to select which

handler a message is sent to. From the definition, we can see, the two output outlets have the behavior of

forwarder and target the workers. The two handlers hforce and hpv handle force aggregation and PV

aggregation, respectively, and target their corresponding output outlets. The input outlet targets the two

handlers and has the behavior of selector, which selects one of handlers based on incoming messages as a

target. When launched, the communication informs all workers the name of its input outlet.

95

Figure 7.15: Solving n-body Simulation Using a Simple Communication

1 //Solution 1: use one simple communication
2 communication nbodys {
3 attributes: {
4 workers: List[ActorRef];
5 condf: List[Any] => Boolean;
6 condpv: List[Any] => Boolean;
7 aggrf: List[Any] => Any;
8 aggrpv: List[Any] => Any;
9 select: (Any, List[ActorRef]) => List[ActorRef];

10 }
11 output outlet: oforce(forwarder(workers));
12 output outlet: opv(forwarder(workers));
13 handler: hforce(aggregator(oforce, condf, aggrf)):
14 handler: hpv(aggregator(opv, condpv, aggrpv));
15 input outlet: in(selector(List(hforce, hpv), select));
16

17 init: {
18 sendm(workers, in);
19 }
20 }

Figure 7.16: n-body Simple Communication

To use this communication, we create an instance of it, set up its attributes, and launch it. Figure 7.17

shows the pseudocode for using it. In the code, we assume the variables assigned to attributes have already

defined by application programmers.

1 nbs = new nbodys();
2 nbs.setAttr(Map("workers"->workers, "condf"->condf, "condpv"->condpv,
3 "aggrf"->aggrf, "aggrpv"->aggrpv, "select"->select));
4 nbs.launch();

Figure 7.17: Using a Simple Communication for n-body Simulation

Worker Code Figure 7.18 shows pseudocode for workers. We suppose the workers have already know the

communication’s input outlet in the code. By comparing Figure 7.13 and Figure 7.18, we can see the code

using a communication moves aggregation tasks to the communication and thus is much cleaner.

Solution 2: Using a Composed Communication

Figure 7.19 shows a composed communication used in this solution. The figure abstracts away outlets and

handlers to only show the connections used to compose the communications. The composed communication

has three sub-communications. Router is a communication with a handler executing the selector behavior,

96

1 task (int block1, int block2);
2 Communication c;
3 process Worker[w = 1 to n] {
4 for (s = 1 to STEPS) {
5 while (true) {
6 t = get a task from the manager;
7 if (t.block1 == 0) break;
8 calculate forces;
9 }

10 send local forces to the c’s input outlet;
11 receive aggregated forces from the communication;
12 calculate positions and velocities base on the aggregated forces;
13 send local bodies to the c’input outlet;
14 receive bodies from the communication;
15 move bodies;
16 }
17 }

Figure 7.18: Worker Code Using a Communication

which forwards received messages to one of the two Mom2m communications: one handles forces and another

PVs.

Figure 7.19: Solving n-body Problem Using a Composed Communication

Figure 7.20 shows the definition of the composed communication. In the code, we can see nbodyc is

composed from three communications rc, fc and pvc by connecting rc’s out1 to fc’s in and rc’s out2

to pvc’s in. The worker’s code is identical with the code for using one simple communication. The code for

using this communication is shown in Figure 7.21 .

Interestingly, by comparing Figure 7.17 and Figure 7.21, we can see that the two pieces of code are almost

identical except the names of the communication classes: one uses nbodys and the other uses nbodyc.

Discussion

Separation of Concerns In both interActors solutions, communication concerns are successfully sepa-

rated from the functional processes, because the workers only need to compute forces and compute new po-

sitions and velocities without worrying about the aggregation, which, I argue, belongs to a communication.

The consequences of separation are modularity and reusability which allows computations and communica-

tions to evolve independently. For example, for the workers, they may use different algorithms to compute

forces; for the communication, they can employ different aggregation strategies.

97

1 //Solution 2: use a composed communication
2 communication nbodyc {
3 comms: { // communications to be composed
4 rc: Router;
5 fc: Mom2m;
6 pvc: Mom2m;
7 }
8 composition: { // composition glue
9 bindings:List((rc.out1, fc.in, forwarder(fc.in)), (rc.out2, pvc.in, forwarder(pvc.in)));

10 }
11 attributes: {
12 workers: List[ActorRef];
13 condf: List[Any] => Boolean;
14 condpv: List[Any] => Boolean;
15 aggrf: List[Any] => Any;
16 aggrpv: List[Any] => Any;
17 select: (Any, List[ActorRef]) => List[ActorRef];
18 }
19 init: {
20 // set attributes
21 rc.attrs(Map("recipients"->workers, "participants"->workers, "select"-> select));
22 fc.attrs(Map("recipients"-> workers, "participants"->workers, "cond"-> condf, "aggr"-> aggrf));
23 pvc.attrs(Map("recipients"-> workers, "participants"->workers, "cond"-> condpv, "aggr"-> aggrpv));
24 // compose
25 OutIn(List(rc, fc, pvc), bindings);
26 // notify participants
27 sendm(workers, rc.in);
28 }
29 }

Figure 7.20: n-body Composed Communication

1 nbs = new nbodyc();
2 nbs.setAttr(Map("workers"->workers, "condf"->condf, "condpv"->condpv,
3 "aggrf"->aggrf, "aggrpv"->aggrpv, "select"->select));
4 nbs.launch();

Figure 7.21: Using the Composed Communication for n-body Simulation

System Overhead The separation not only leads to modularity, but it also reduces the number of messages.

For example, suppose there are n workers, the number of messages required for sharing forces is n× (n− 1)

in the manager-worker implementation because n workers need to send a message to the other n−1 workers.

However, the number of messages is 2×n if they exchange forces through a communication: n messages sent

from workers to the communication and n messages sent to the workers by the communication. The same

analysis applies to the process of exchange positions and velocities.

However, when we look at the amount of network traffic, interActors introduce some network overhead.

Suppose the calculated forces for each task is stored in an array and the length of force array is l, the ith

worker calculates bi tasks and thus have bi force arrays to share. In the manager-worker implementation,

the amount of network traffic is:

n∑
i=1

bi × l × (n − 1). Because the total number of tasks is
n× (n+ 1)

2
,

n∑
i=1

bi =
n× (n+ 1)

2
. Therefore, the required network traffic is

n× (n+ 1)

2
× (n− 1)× l (7.1)

In the interActors solutions, the network traffic has two parts: from workers to the communication and from

the communication to the workers. For the first part, the network traffic is

n∑
i=1

bi × l =
n× (n+ 1)

2
× l;

98

for the second part, because each message sent from the communication is
n× (n+ 1)

2
× l and there are n

messages, the network traffic is
n× (n+ 1)

2
× l × n. Therefore, the total traffic is

n× (n+ 1)

2
× (n+ 1)× l (7.2)

Comparing Equation 7.2 and Equation 7.1, we get the network overhead is:

n× (n+ 1)× l (7.3)

Using the same analysis, the network overhead for exchanging positions and velocities is:

2× n× l (7.4)

where l is the length of position and velocity array for each block.

Complexity The introduction of a communication as a broker for sharing forces and positions and velocities

adds a level of abstraction complexity to the system – the communication layer. One may argue that we

can use a dedicated process to aggregate forces and positions and velocities. However, this solution, too,

introduces a mediator. Moreover, the dedicated process not only aggregates forces but it also aggregates

positions and velocities, which mixes concerns. Using two dedicated processes, one is for force aggregation

and another is for position and velocity aggregation, resolves this problem; however, the workers need to

know the two processes, whereas, in the solutions using a communication, the workers are only required to

know one process – the input outlet of the communication. Worse, if an application requires more aggregation

tasks, more dedicated processes are created. If using a communication, we still use one communication but

add more handlers into it (for instance, in the case of using one simple communication).

7.2.2 Web Service Orchestration

To illustrate the concepts for orchestrating web services, I augment an example presented in [62]: consider

a purchase system of a manufacturer. A product configuration of the manufacturer is made of a number

of different types of parts. Each type of parts can be supplied by a number of suppliers. A buyer of the

manufacturer works with a purchasing agent to fulfill the inventory requirements. The purchasing agent, in

turn, contacts part suppliers. Once received offer responses from part suppliers, the agent reply to the buyer

a proposal. Finally, the buyer determines whether making purchases or cancelling the request. Figure 7.22

shows this scenario. In the figure, each gray rectangle represents a set of part suppliers of the same kind.

In this example, part suppliers and the buyer are considered as web services to be orchestrated, and the

purchasing agent is the central composing process.

Analysis

Although this problem can be approached by allowing the agent to contact a list of part suppliers directly,

this complicates the code for the agent because it should deal with suppliers for different parts. In this case,

99

Figure 7.22: Part Purchasing Service

it should interact with three sets of part suppliers. Furthermore, if the product configuration changes, it is

not easy to modify the code to accommodate new requirements because code for dealing with suppliers mixes

together.

The purchasing agent can be treated as a communication, which is responsible for interacting with sup-

pliers. To make the code of the purchasing agent simple and modular, instead of using one simple communi-

cation, we treat the purchasing agent as a composed communication. To distinguish different components in

the composed communication, from here on, we call the purchasing agent the product purchasing agent and

the composed communication purchasing communication. We introduce a part purchasing agent for each

type of parts. The purchasing communication includes four purchasing agents: one product purchasing agent

and three part purchasing agents. The goal of each part purchasing agent is to obtain the best offer from

their part suppliers and then send the offer to the product purchasing agent. Once received offers from each

part purchasing agent, the product purchasing agent can subsequently aggregates the best deal and proposes

it to the buyer.

Interestingly, for each component in the purchasing communication, it carries out the following four similar

tasks:

• receiving a request from a requester

• forwarding the request to participants

• gathering responses from participants

• aggregating a result and sending it to the requester

Therefore, the four purchasing agents are the same communication type, which is presented next.

Solution

In this section, I first define a communication called Two-way Multi-Origin Many-to-Many (MOM2M-2W).

Then we use it to build the purchasing communication.

100

MOM2M-2W Communication An MOM2M-2W communication has two input outlets, two output

outlets, and one handler as shown in Figure 7.23. An MOM2M-2W not only collects responses from par-

ticipants like an MOM2M, it also sends requests to participants. The two input outlets request in and

response in are used to receive requests from requesters and receive responses from participants, respec-

tively; the two output outlets request out and response out are used to forward requests to participants

and forward responses to requesters, respectively; the handler is an aggregator, which collects responses and

aggregates a result.

Figure 7.23: Two-way Multi-Origin Many-to-Many Communication

The code for the MOM2M-2W communication is shown in Figure 7.24. The communication accepts

purchasing requests from requesters through the input outlet request in, forwards the requests to

suppliers through the output outlet request out, gathers responses arrived at the input outlet response in,

and sends aggregated results to requesters through the output outlet response out. The handler has the

behavior of aggregator. cond function is used to determine when the communication should stop receiving

responses and aggr function is used to aggregate a result from responses received so far. At the time of

launching, the communication notifies the requesters the name of request in and the suppliers the name

of response in.

1 communication Mom2m2w {
2 attributes: {
3 requesters: List[ActorRef];
4 suppliers: List[ActorRef];
5 cond: List[Any] => Boolean;
6 aggr: List[Any] => Any;
7 }
8 output outlet: request_out(forwarder(suppliers));
9 input outlet: request_in(forwarder(request_out));

10

11 output outlet: response_out(forwarder(requesters));
12 handler: aggregator(aggregator(response_out, cond, aggr));
13 input outlet: response_in(forwarder(aggregator));
14 init: {
15 sendm(requesters,request_in);
16 sendm(suppliers, response_in);
17 }
18 }

Figure 7.24: Code: Two-way Multi-Origin Many-to-Many Communication

Purchasing Communication Now we build the purchasing communication from Mom2m2w. The purchas-

ing communication has four purchasing agents that are the type of Mom2m2w. Internally, the relationship

among them is as follows: the product purchasing agent receives requests and forwards the requests to the

101

three part purchasing agents; once the part purchasing agents receive responses from suppliers and aggregate

a result, they send it to the product purchasing agent. Externally, the product purchasing agent interacts

with the buyer and the part purchasing agents communicate with part suppliers. Figure 7.25 shows the entire

purchasing system. In the figure, PA represents the product purchasing agent; P1, P2, and P3 are the three

part purchasing agents. The rectangle encapsulating PA, P1, P2, and P3 is the purchasing communication

– the composed communication. To simplify the figure, I do not draw the outlets and the handler for each

purchasing agent. Furthermore, I use double-arrows to represent the connections between communications.

Recall double-arrows represent the connections (output-input merge) between communications. For example,

the line with two double-arrows between PA and P1 means that there are two connections between them.

That is, request out of PA is connected to the request in of P1 and response out of P1 is connected

to response out of PA by referring to the definition shown in Figure 7.26.

Figure 7.25: Manufacturer Purchasing System

Figure 7.26 defines the purchasing communication using CSL. The communication is named as purchase

including four Mom2m2w communications: pa, p1, p2, and p3. bindings defines the composition glue

between these communications. For example, line 10 defines the output outlet request out of pa is

connected to the input outlet request in of p1 through a handler with the behavior forwarder that

targets the input outlet request in of p1. requesters is a list of buyers that can send buy requests to

the product purchasing agent pa. suppliers1, suppliers2, and suppliers3 represents the three sets

of part suppliers. For each agent, they have their own condition function and aggregation function: conda

and aggra are for pa; cond1 and aggr1 are for p1, cond2 and aggr2 are for p2, and cond3 and aggr3

are for p3, which is reflected in line 35 - line 38. In these statements, some attributes are set to null,

because they are not necessary to have an initial value since the communications will be composed in the

later statement. Line 41 composes the four communications. Finally, the input outlets are sent to appropriate

parties so that they can use them: the request in of pa is sent to the requesters, response in of p1

is sent to suppliers1, response in of p2 is sent to suppliers2, and response in of p3 is sent to

suppliers3.

102

1 communication purchase{
2 comms: { // communications to be composed
3 pa: Mom2m2w;
4 p1: Mom2m2w;
5 p2: Mom2m2w;
6 p3: Mom2m2w;
7 }
8 composition: { // composition glue
9 bindings:List(

10 (pa.request_out,p1.request_in, forwarder(p1.request_in)),
11 (pa.request_out,p2.request_in, forwarder(p2.request_in)),
12 (pa.request_out,p3.request_in, forwarder(p3.request_in)),
13 (p1.response_out,pa.response_in, forwarder(pa.response_in)),
14 (p2.response_out,pa.response_in, forwarder(pa.response_in)),
15 (p3.response_out,pa.response_in, forwarder(pa.response_in))
16);
17 }
18 attributes: {
19 requesters: List[ActorRef];
20 suppliers1: List[ActorRef];
21 suppliers2: List[ActorRef];
22 suppliers3: List[ActorRef];
23

24 conda: List[Any] => Boolean;
25 aggra: List[Any] => Any;
26 cond1: List[Any] => Boolean;
27 aggr1: List[Any] => Any;
28 cond2: List[Any] => Boolean;
29 aggr2: List[Any] => Any;
30 cond3: List[Any] => Boolean;
31 aggr3: List[Any] => Any;
32 }
33 init: {
34 // set attributes
35 pa.attrs(Map("requesters"-> requesters, "suppliers"->null, "cond"-> conda, "aggr"-> aggra));
36 p1.attrs(Map("requesters"-> null, "suppliers"->suppliers1, "cond"-> cond1, "aggr"-> aggr1));
37 p2.attrs(Map("requesters"-> null, "suppliers"->suppliers2, "cond"-> cond2, "aggr"-> aggr2));
38 p3.attrs(Map("requesters"-> null, "suppliers"->suppliers3, "cond"-> cond3, "aggr"-> aggr3));
39

40 // compose
41 OutIn(List(pa, p1, p2, p3), bindings);
42 // notify participants
43 sendm(requesters, pa.request_in);
44 sendm(suppliers1, p1.response_in);
45 sendm(suppliers2, p2.response_in);
46 sendm(suppliers3, p3.response_in);
47 }
48 }

Figure 7.26: Code: Purchasing Communication

Discussion

Apparently, the communication-oriented solution leads to some overhead comparing to allowing the purchas-

ing agent to interact with part suppliers directly. First of all, it introduces three part purchasing agents,

which adds one more layer of complexity to the system and makes the system heavier. Second of all, the

number of messages increases due to the newly introduced part agents, however, the number is constant, in

this case is 2× 3 = 6.

Whereas, I believe the benefits gained in this solution shadow its shortcomings. The benefits are a modular

system and a reusable component – Mom2m2w communication. Because of the modularity, the system can

be easily scaled up to handle more types of part suppliers.

Because of composition, the Mom2m2w communication can be used in different applications. For example,

consider a client booking a vacation through a travel agent. The agent, in turn, contacts different service

103

providers in order to find a deal for her client. The vacation package should include a round-trip flight, a

hotel room, and a car. The goal of the agent is to find the best deal for her client. In practice, in addition

to prices, the client may have other constraints, such as departure and arrival time of a flight, location of a

hotel, etc. This example is nearly the same as the manufacturer purchasing system and can be solved using

the same solution as described above. The only difference is that this application may require different values

to initiate attributes and functions.

7.2.3 Crowd-sourced Services

This section shows a communication can be used as a service. Consider a crowd-sensed restaurant recom-

mendation service based on data collected from diners’ smartphones. A long-lived service of this type would

need to group devices based on their geographic locations, solicit data from their devices, aggregate data from

those at the same restaurant, etc. Figure 7.27 illustrates this scenario. A client who wants to get reviews

about restaurants in the system sends a request to the crowd-sourced service, which is a communication.

The crowd-sourced service responds the client the reviews of all restaurants, and subsequently, the client

can make her own decision based on the received reviews. The smartphone owners can send their reviews

about a restaurant to the crowd-sourced service, which collects those reviews and calculates overall reviews

for restaurants. In this example, we suppose the smartphone owners know where they send their reviews.

For example, this information may be pre-set when a mobile application using the crowd-sourced service is

installed on a smartphone.

Figure 7.27: Restaurant-recommendation System

Figure 7.28 shows the crowd-sourced service communication that has two input outlets, one output outlet,

and one handler. The two input outlets request in and response in are used by a client to send a

request and by smartphones to send reviews, respectively. Both of them target the handler. The output

outlet response out is used to send reviews to the requester. The handler recommender not only accepts

requests from clients and responds them with reviews of all restaurants, but it also collects reviews from

smartphones and aggregates an overall review for each restaurant.

104

Figure 7.28: Crowd-sourced Service Communication

Figure 7.29 defines the crowd-sourced communication using CSL. Because we suppose the smartphones

know the existence of the communication, we use a broker broker to hold the name of response in so

that any smartphone wants to send its reviews without knowing the name of response in should contact

the broker first to get it. We assume the name of the broker is a well-known name in the system. At the

time of launching a crowd-sourced communication, the name of response in is sent to the broker. In the

definition, the output outlet response out has the behavior of connector and the handler hdr has the

behavior of recommender. We define these two behaviors next.

1 communication crowdsourcing {
2 attributes: {
3 broker: ActorRef;
4 }
5 output outlet: response_out(connector(null));
6 handler: hdr(recommender(response_out));
7 input outlet: request_in(forwarder(hdr));
8 input outlet: response_in(forwarder(hdr));
9

10 init: {
11 sendm(broker, response_in);
12 }
13 }

Figure 7.29: Code: Crowd-sourced Communication

recommender Behavior recommender, defined in Figure 7.30, does two things in accordance with dif-

ferent types of incoming messages:

1. When an incoming message is a name of an actor, it sends the reviews of all restaurants along with the

name of the actor to its targets.

2. Otherwise, the incoming message is a tuple having two integers: the first one is the identity of a

restaurant to be rated; the second one is the rate number. recommender computes a new overall

reviews based on the incoming message.

recommender has two lists nors and reviews, which are used to hold the number of reviews for each

restaurant and its current overall review, respectively. recommender calculates a new overall reviews for

a restaurant from its current overall review, the incoming review, and the number of reviews received so

105

far (line 14). After obtaining the new overall review, recommender updates the two local lists nors and

reviews using the new values.

1 behavior recommender(targets) {
2 var nors: List[Int]; // a list of the number of reviews for each restaurant
3 var reviews: List[Int]; // the overall reviews for each restaurant
4 receive(msg) = {
5 if (msg.isInstanceOf[ActorRef]) {
6 send(targets, (msg, reviews));
7 } else if (msg.isInstanceOf[(Int, Int)]) {
8 val ml = msg.asInstanceOf[(Int, Int)];
9 var id = ml._1;

10 var rate = ml._2;
11 var nrs = get(nors, id); // get the number of reviews
12 var review = get(reviews, id); // get the current review
13 // compute the new review
14 review = (review * nrs + rate) /(nrs + 1);
15

16 // set the new value for nors and reviews
17 set(nors, id, (nrs+1));
18 set(reviews, id, review);
19 }
20 }
21 }

Figure 7.30: Code: Recommender Behavior

connector The definition of behavior of connector is shown in Figure 7.31. An incoming message of

connector has the type of (ActorRef, List[Int]). At the arrival of a message, connector retrieves

the name of an actor and obtains a list of integers from the message. Then it sends the list of integers

to the actor. In the crowd-sourced communication, connector sends out a list of reviews. Notice that

connector ignores its passing targets targets but uses the actor obtained from incoming messages as a

message target.

1 behavior connector(targets) {
2 receive(msg) = {
3 if (msg.isInstanceOf[(ActorRef, List[Int])]) {
4 val ml = msg.asInstanceOf[(ActorRef, List[Int])];
5 val t = ml._1;
6 val ranks = ml._2;
7 send(t, ranks);
8 }
9 }

10 }

Figure 7.31: Code: Connector Behavior

Discussion

This section uses the crowd-sourced service to show that communications can be used as long-lived services.

I do not intend to use communications only to simulate complex social networking systems, such as Face-

book, Twitter, and Linkedin. However, the communication part of those systems can be separated from

computations and can be encapsulated in communications.

106

7.3 Summary

This chapter evaluated interActors through comparison and case studies. interActors make applications

modular and makes applications’ components independent and reusable. Section 7.1 compares interActors

with Reo using two examples: SOM2M and US election. The comparison with Reo showed that interActors

offer advantages in terms of programmability. We used communications to coordinate worker agents in

an n-body simulation in Section 7.2.1, to orchestrate a number of web services in Section 7.2.2, and to

provide a web service in Section 7.2.3. Among these five examples, three (i.e., US election, n-body simulation

problem, and web services orchestration) used communication composition. From these examples, we can

see communication composition not only facilitates reusability but also promotes modularity.

There are two levels of reusability: class level and object level. In the class level, a communication class

can be reused to compose a more complex communication class. In the object level, a communication object

can be reused by resetting its attributes. This chapter uses a number of examples to demonstrate reusability

in the class level.

We see that interActors may also improve overall system performance by reducing the number of messages

(Section 7.2.1). However, it may introduce overhead to some applications (Section 7.2.2). Because interActors

add a layer onto the existing computation layer, for some applications, systems using interActors may generate

more messages than equivalent systems which do not use interActors. For example, the simplest case is of two

processes communicating with each other through a channel, where two messages are added to the system:

one from the sender to the channel and the other from the channel to the receiver. A communication can be

thought of as a dedicated coordinator. If we ignore messages within the communication, the increase in the

number of messages is in proportion to the number of parties using the communication.

interActors provide a different way to program communication protocols. Especially, interActors enable

building of libraries of communications which can be used in the future. interActors can be used in many

types of applications. For example, as demonstrated in Section 7.2.3, a communication can be used as a

service. Because communications can be composed using the three composition rules, interActors can be

used for composing web services. Because interActors add an additional layer onto existing systems, it is

inevitable that it has some system overhead. Therefore, applications which cannot tolerate this overhead for

better programmability may not benefit from interActors.

To conclude, it is up to programmers to determine whether using interActors would be beneficial or

not. Generally speaking, if programmers require programmability, modularity, and reusability, they should

consider using interActors in their applications.

107

Chapter 8

Conclusion and Future Work

Communication is ubiquitous in concurrent systems, both for information exchange and for coordination.

Without communication, concurrent computations would turn to standalone islands. In a variety of emerging

applications, the interactions in concurrent computations are becoming more complex and varied, often

requiring more complex process logic at run-time, such as aggregating and decision-making. However, code

for handling those process logic is often mixed with the functional code in an application. Leaving such

complex interactions to be managed by the communicating computations complicates code, and hampers

reusability and modularity. Although significant advances have been made in separating communication

concerns of computations from their functional concerns, existing approaches create static protocols which

cannot evolve over the course of interactions.

In this thesis, I developed a way for separating communications of computations from their functional

concerns. Communications are treated as first-class objects and consist of two types of active objects:

outlets and handlers. There are two types of outlets: input and output. Processes can send messages to

a communication through the input outlets of the communication that they connect to, and can receive

messages through the output outlets. Handlers carry out communication logics, which are not visible to

external observers. Because outlets and handlers are active and essentially drive the communications, we say

that communications are self-driven. A primitive communication is just a channel to connect two processes.

Complex communications can be built by composing simpler communications using three composition

rules: input merge, output merge, and output-input merge. Making communications composable offers a

number of benefits. The main benefit of composing communications is to facilitate the reuse of designs and

implementations. Further, composed communications can be reasoned by reasoning their simpler composing

communications, offering potentials to study the entire system easier. Last but not least, constructing complex

communications by composing simpler communications enables developers to create libraries of novel types

of communications, hence, developers can build a complex communication using simpler communications

already existed in libraries instead of implementing it from scratch.

Operational semantics were developed by extending the actor model with support for complex communi-

cations. I applied the concept of computational reflection. A layer called the communication layer is added

onto the existing actor layer. The communication layer is where complex communications occur and the

108

actor layer supports actors. Compositional semantics are presented which formalize the three composition

rules.

I prototyped interActors using Scala and the Akka actor library. A number of example communica-

tions were given to illustrate interActors. The programming style using communications can be called

Communication-Oriented Programming (COP).

I developed a special language called Communication Specification Language (CSL) with the intention

of restricting arbitrarily complex code in communications. Specifically, CSL does not allow loops and thus

guarantees that a communication terminates within a finite number of execution steps. I also developed a

translator to translate CSL code into executable Scala code.

interActors are evaluated using case studies and by comparison with Reo, a leading coordination model,

to demonstrate ease of programmability, reusability, and modularity.

8.1 Implications

There are a variety of applications which have important implications for interActors. Here, I highlight

Massive Open Online Courses (MOOCs), internet of things, and crowd-sourced services.

MOOCs have been steadily gaining popularity. In a MOOC, interactions between students and teachers

can be complex and challenging. For example, because there are a large number of students, it is impossible

for a MOOC teacher to answer each student’s question. One solution to this dilemma is that teachers only

answer the questions that most students care about. Those questions could be selected through voting.

Another challenge is that when there is a question available, when teachers should be notified? If a teacher

frequently stops her lecture to answer questions, the delivery of the lecture would be disruptive and the

student experience would be miserable.

Internet of Things (IoT) [45] involves a wide range of everyday objects that have embedded computing

devices, and those objects generate, collect, and exchange data. Decision-making and aggregation mechanisms

are often required in an IoT system [15], and considering those mechanisms as communications concerns would

lead to a better solution.

There are many crowd-sourced services, such as change.org [20], Be My Eyes [30], and Airbnb [5], etc.

These services collect data from their users, organize data, and aggregate data, which can be handled sepa-

rately from the functional concerns of processes. interActors offer a way of developing crowd-sourced services

using communications, which could be a more elegant way.

8.2 Future Directions

There are three important future directions which I would like to pursue. First, formally studying of the

properties of systems based on interActors, second, make enhancements and improvements in CSL, and third,

an exploration of interesting application domains.

109

I would like to investigate the properties of communications. CSL can be extended with support for

inheritance. I would like to build a grammar checker for CSL so that grammar errors can be found in the

early stage but not at the compile time when compiling translated code in other programming languages.

Finally, the effectiveness of disallowing loops in CSL code in discouraging inclusion of functional concerns in

communications will be studied, along with other opportunities for appropriately restricting CSL.

Among application domains mentioned in Section 8.1, I would like to explore opportunities to offer

communications as services, and price them based on the resource demands they place on the system. For

example, cloud services companies can build their services based on interActors and precisely reason about

the actual cost of providing certain types of communications.

Other possible domains I am interested in include web services, big data, and wireless sensor networks.

Communications can be used to compose web services as demonstrated in Chapter 7. A composed web service

can be further composed with other web services using communications, to create composite web services as

described in [47]. In big data and wireless sensor networks, collective communication patterns [21] are often

involved, which can be easily encapsulated in communications.

110

References

[1] João Abreu and José Luiz Fiadeiro. A Coordination Model for Service-Oriented Interactions. In Proceed-
ings of the 10th International Conference on Coordination Models and Languages, pages 1–16. Springer-
Verlag, 2008.

[2] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,
MA, USA, 1986.

[3] Gul Agha and Christian Callsen. Actorspace: Open Distributed Programming Paradigm. In Proceedings
of the fourth ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 23–
32, New York, NY, USA, 1993. ACM.

[4] Gul Agha, Ian Mason, Scott Smith, and Carolyn Talcott. A Foundation for Actor Computation. Journal
of Functional Programming, 7(1):1–72, January 1997.

[5] Airbnb. Airbnb. http://www.airbnb.com/.

[6] Abdaladhem Albreshne, Patrik Fuhrer, and Jacques Pasquier. Web Services Orchestration and Compo-
sition, 2009.

[7] Gregory Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-
Wesley, 2000.

[8] Tony et.al. Andrews. Business Process Execution Language for Web Services. 2003.

[9] Farhad Arbab. The IWIM Model for Coordination of Concurrent Activities. In Paolo Ciancarini and
Chris Hankin, editors, Coordination Languages and Models, volume 1061 of Lecture Notes in Computer
Science, pages 34–56. Springer Berlin Heidelberg, 1996.

[10] Farhad Arbab. Reo: A Channel-based Coordination Model for Component Composition. Mathematical
Structures in Computer Science, 14(3):329–366, June 2004.

[11] Farhad Arbab. Puff, The Magic Protocol. In Gul Agha, Olivier Danvy, and Jos Meseguer, editors,
Formal Modeling: Actors, Open Systems, Biological Systems, volume 7000 of Lecture Notes in Computer
Science, pages 169–206. Springer Berlin Heidelberg, 2011.

[12] Farhad Arbab, Lăcrămioara Aştefănoaei, Frank S. Boer, Mehdi Dastani, John-Jules Meyer, and Nick
Tinnermeier. Reo Connectors as Coordination Artifacts in 2APL Systems. In TheDuy Bui, TuongVinh
Ho, and QuangThuy Ha, editors, Intelligent Agents and Multi-Agent Systems, volume 5357 of Lecture
Notes in Computer Science, pages 42–53. Springer Berlin Heidelberg, 2008.

[13] Mark Astley, Daniel C. Sturman, and Gul Agha. Customizable Middleware for Modular Distributed
Software. Communication of ACM, 44(5):99–107, 2001.

[14] Francoise Baude, Denis Caromel, Ludovic Henrio, and Matthieu Morel. Collective Interfaces for Dis-
tributed Components. In Proceedings of the Seventh IEEE International Symposium on Cluster Com-
puting and the Grid, pages 599–610. IEEE Computer Society, 2007.

[15] Chiara Bodei, Pierpaolo Degano, Gian-Luigi Ferrari, and Letterio Galletta. Where Do Your IoT Ingre-
dients Come From? In International Conference on Coordination Languages and Models, pages 35–50.
Springer, 2016.

111

[16] Boomerang. Schedule Email to be Sent Later in Gmail. http://www.boomeranggmail.com/l/
schedule-an-email.html. Accessed: 2016-10-17.

[17] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani. The
Fractal Component Model and Its Support in Java. Software: Practice and Experience, 36(11-12):1257–
1284, 2006.

[18] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Reactive Tuple Spaces for Mobile Agent
Coordination. In Kurt Rothermel and Fritz Hohl, editors, Mobile Agents, volume 1477 of LNCS, pages
237–248. Springer, 1998.

[19] Christian Callsen and Gul Agha. Open Heterogeneous Computing in ActorSpace. Journal of Parallel
and Distributed Computing, 21(3):289–300, 1994.

[20] change.org. change.org. http://www.change.org/.

[21] Nicholas Chen, Rajesh Kumar Karmani, Amin Shali, Bor-Yiing Su, and Ralph Johnson. Collective
Communication Patterns. In Workshop on Parallel Programming Patterns (ParaPLOP), 2009.

[22] Gianpaolo Cugola and Alessandro Margara. High-Performance Location-Aware Publish-Subscribe on
GPUs, pages 312–331. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[23] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. Dynamic
Choreographies. In International Conference on Coordination Languages and Models, pages 67–82.
Springer, 2015.

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Com-
munication of ACM, 51(1):107–113.

[25] Enrico Denti, Antonio Natali, and Andrea Omicini. On the Expressive Power of a Language for Pro-
gramming Coordination Media. In Proceedings of the 1998 ACM Symposium on Applied Computing,
SAC ’98, pages 169–177, New York, NY, USA, 1998. ACM.

[26] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko Yoshida. Objects
and Session Types. Information and Computation, 207(5):595 – 641, 2009.

[27] Peter Dinges and Gul Agha. Scoped Synchronization Constraints for Large Scale Actor Systems. In
Proceedings of the 14th international conference on Coordination Models and Languages, COORDINA-
TION’12, pages 89–103, Berlin, Heidelberg, 2012. Springer-Verlag.

[28] Aiden Dipple, Kerry Raymond, and Michael Docherty. Stigmergy in Web 2.0: a Model for Site Dynamics.
In Proceedings of the 3rd Annual ACM Web Science Conference, WebScience 2012, pages 86–94, 2012.

[29] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The Many Faces
of Publish/Subscribe. ACM Computing Surveys, 35(2):114–131.

[30] Be My Eyes. Be my eyes. http://www.bemyeyes.org/.

[31] Svend Frølund. Coordinating Distributed Objects : An Actor-based Approach to Synchronization. MIT
Press, 1996.

[32] Svend Frølund and Gul Agha. Abstracting Interactions Based on Message Sets. In Object-Based Models
and Languages for Concurrent Systems, LNCS, pages 107–124. Springer-Verlag, 1995.

[33] David Gelernter and Nicholas Carriero. Coordination Languages and Their Significance. Communication
of ACM, 35(2):96–107, February 1992.

[34] Hongxing Geng and Nadeem Jamali. Supporting Many-to-Many Communication. AGERE! ’13, pages
81–86. ACM, 2013.

112

[35] Google. Priority Inbox. https://support.google.com/mail/answer/186531. Accessed: 2016-
10-17.

[36] Sebastian Gutierrez-Nolasco and Nalini Venkatasubramanian. A Reflective Middleware Framework for
Communication in Dynamic Environments. In Robert Meersman and Zahir Tari, editors, On the Move
to Meaningful Internet Systems: CoopIS, DOA, and ODBASE, pages 791–808. Springer, 2002.

[37] Sebastian Gutierrez-Nolasco and Nalini Venkatasubramanian. A Reflective Middleware Framework for
Communication in Dynamic Environments. In Robert Meersman and Zahir Tari, editors, On the Move
to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE, volume 2519 of Lecture Notes in
Computer Science, pages 791–808. Springer Berlin Heidelberg, 2002.

[38] C. A. R. Hoare. Communicating Sequential Processes. Communication of ACM, 21(8):666–677, August
1978.

[39] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types. In
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’08, pages 273–284. ACM, 2008.

[40] Yongqiang Huang and Hector Garcia-Molina. Publish/Subscribe in a Mobile Environment. Wireless
Networks, 10(6):643–652.

[41] Shams M. Imam and Vivek Sarkar. Selectors: Actors with Multiple Guarded Mailboxes. In Proceedings
of the 4th International Workshop on Programming Based on Actors Agents, and Decentralized Control,
AGERE! ’14, pages 1–14, New York, NY, USA, 2014. ACM.

[42] Nadeem Jamali and Hongxing Geng. A Mailbox Ownership Based Mechanism for Curbing Spam.
Computer Communications, 31(15):3586 – 3593, 2008.

[43] Sung-Shik T. Q. Jongmans, Sean Halle, and Farhad Arbab. Reo: A Dataflow Inspired Language for
Multicore. In 2013 Data-Flow Execution Models for Extreme Scale Computing, pages 42–50, Sept 2013.

[44] Stephen Kell. Rethinking Software Connectors. In International Workshop on Synthesis and Analysis
of Component Connectors: In Conjunction with the 6th ESEC/FSE Joint Meeting, SYANCO ’07, pages
1–12. ACM, 2007.

[45] Hermann Kopetz. Internet of Things, pages 307–323. Springer US, Boston, MA, 2011.

[46] Kung-Kiu Lau, Mario Ornaghi, and Zheng Wang. A Software Component Model and Its Preliminary
Formalisation. In International Symposium on Formal Methods for Components and Objects, pages
1–21. Springer, 2005.

[47] Kung-Kiu Lau and Cuong Tran. Composite Web Services. In Emerging Web Services Technology,
Volume II, pages 77–95. Springer, 2008.

[48] Kung-Kiu Lau, Perla Velasco Elizondo, and Zheng Wang. Exogenous Connectors for Software Compo-
nents. In Proceedings of the 8th International Conference on Component-Based Software Engineering,
CBSE’05, pages 90–106, Berlin, Heidelberg, 2005. Springer-Verlag.

[49] Vitaliy Liptchinsky, Roman Khazankin, Hong-Linh Truong, and Schahram Dustdar. Statelets: Co-
ordination of Social Collaboration Processes. In Proceedings of the 14th International Conference on
Coordination Models and Languages, pages 1–16. Springer-Verlag, 2012.

[50] Andoni Lombide Carreton and Theo D’Hondt. A Hybrid Visual Dataflow Language for Coordination in
Mobile Ad-hoc Networks. In Proceedings of the 12th International Conference on Coordination Models
and Languages, pages 76–91. Springer-Verlag, 2010.

[51] Pattie Maes. Computational Reflection. In Katharina Morik, editor, GWAI-87 11th German Work-
shop on Artifical Intelligence, volume 152 of Informatik-Fachberichte, pages 251–265. Springer Berlin
Heidelberg, 1987.

113

[52] Francisco Maia, Miguel Matos, José Pereira, and Rui Oliveira. Worldwide Consensus. In Proceedings of
the 11th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems,
pages 257–269. Springer-Verlag, 2011.

[53] Thomas W. Malone and Kevin Crowston. The Interdisciplinary Study of Coordination. ACM Computing
Surveys, 26(1):87–119, March 1994.

[54] Marco Mamei and Franco Zambonelli. Programming Stigmergic Coordination with the TOTA Middle-
ware. In Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’05, pages 415–422, New York, NY, USA, 2005. ACM.

[55] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a Taxonomy of Software Con-
nectors. In Proceedings of the 22Nd International Conference on Software Engineering, pages 178–187.
ACM, 2000.

[56] Chris Metz. IP Anycast: Point-to-(any) Point Communication. IEEE Internet Computing, 6(2):94–98,
March 2002.

[57] Microsoft. Asynchronous Agents Library. https://msdn.microsoft.com/en-us/library/
dd492627.aspx.

[58] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1982.

[59] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press, New
York, NY, USA, 1999.

[60] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Miche-
loud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An Overview of the Scala
Programming Language. Technical report, 2004.

[61] Andrea Omicini and Enrico Denti. From Tuple Spaces to Tuple Centres. Science of Computer Program-
ming, 41(3):277 – 294, 2001.

[62] Chris Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46–52, 2003.

[63] Eline Philips, Jorge Vallejos, Ragnhild Van Der Straeten, and Viviane Jonckers. Group Orchestration
in a Mobile Environment. In Proceedings of the 14th International Conference on Coordination Models
and Languages, pages 181–195. Springer-Verlag, 2012.

[64] Eline Philips, Ragnhild Van Der Straeten, and Viviane Jonckers. Now: a Workflow Language for
Orchestration in Nomadic Networks. In Proceedings of the 12th International Conference on Coordination
Models and Languages, pages 31–45. Springer-Verlag, 2010.

[65] Esmond Pitt and Kathy McNiff. Java RMI: The Remote Method Invocation Guide. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[66] Aleksandar Prokopec and Martin Odersky. Isolates, Channels, and Event Streams for Composable
Distributed Programming. In 2015 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), Onward! 2015, pages 171–182. ACM, 2015.

[67] Shangping Ren, Yue Yu, Nianen Chen, Kevin Marth, Pierre-Etienne Poirot, and Limin Shen. Actors,
Roles and Coordinators - A Coordination Model for Open Distributed and Embedded Systems. COOR-
DINATION ’2006, pages 247–265, Berlin, Heidelberg, 2006. Springer-Verlag.

[68] Reo. Reo coordination language. http://reo.project.cwi.nl/reo/.

[69] Vinay Setty, Maarten van Steen, Roman Vitenberg, and Spyros Voulgaris. PolderCast: Fast, Robust,
and Scalable Architecture for P2P Topic-Based Pub/Sub, pages 271–291. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

114

[70] Mary Shaw. Procedure Calls Are the Assembly Language of Software Interconnection: Connectors
Deserve First-Class Status. In Selected Papers from the Workshop on Studies of Software Design, ICSE
’93, pages 17–32. Springer-Verlag, 1996.

[71] Munindar P. Singh. Information-driven Interaction-oriented Programming: BSPL, the Blindingly Simple
Protocol Language. AAMAS ’11, pages 491–498, Richland, SC, 2011.

[72] Munindar P. Singh. LoST: Local State Transfer – An Architectural Style for the Distributed Enactment
of Business Protocols. In 2011 IEEE International Conference on Web Services, pages 57–64, July 2011.

[73] Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. Why Do Scala Developers Mix the Actor Model
with Other Concurrency Models? ECOOP’13, pages 302–326, Berlin, Heidelberg, 2013. Springer-Verlag.

[74] Guy Theraulaz and Eric Bonbeau. A Brief History of Stigmergy. Artificial Life, 5(2):97–116.

[75] Typesafe. Akka Framework. http://www.akka.io.

[76] H. Van Dyke Parunak. A Survey of Environments and Mechanisms for Human-Human Stigmergy. In
Proceedings of the 2nd International Conference on Environments for Multi-Agent Systems, E4MAS’05,
pages 163–186, Berlin, Heidelberg, 2006. Springer-Verlag.

[77] Carlos Varela and Gul Agha. Programming Dynamically Reconfigurable Open Systems with SALSA.
SIGPLAN Notices, 36(12):20–34, December 2001.

[78] Steve Vinoski. Corba: Integrating Diverse Applications within Distributed Heterogeneous Environments.
IEEE Communications Magazine, 35(2):46–55, Feb 1997.

[79] Ken Wakita. First Class Continuation Facilities in Concurrent Programming Language Harmony/2. In
Theory and Practice of Parallel Programming, LNCS, pages 300–319. Springer-Verlag, 1995.

[80] David W Walker and Jack J Dongarra. MPI: a Standard Message Passing Interface. Supercomputer,
12:56–68, 1996.

[81] Peter Wegner. Why Interaction is More Powerful Than Algorithms. Commun. ACM, 40(5):80–91, May
1997.

[82] Danny Weyns, Andrea Omicini, and James Odell. Environment as a First Class Abstraction in Multia-
gent Systems. Autonomous Agents and Multi-Agent Systems, 14(1):5–30, 2007.

[83] Xi Wu, Ximeng Li, Alberto Lluch Lafuente, Flemming Nielson, and Hanne Riis Nielson. Klaim-DB: A
Modeling Language for Distributed Database Applications. In International Conference on Coordination
Languages and Models, pages 197–212. Springer, 2015.

115

Appendix A

Scala Source Code

This appendix only lists Scala code mentioned in this thesis for reference purpose, but not includes all
the source code developed for this project.

A.1 CSL class

1 package agents.envelope
2

3 import akka.actor.{ Actor, ActorRef, ActorContext, Props }
4 import scala.collection.mutable.Map // we are using mutable map
5 import agents.envelope.behavior.Forwarder
6 import agents.envelope.communication.Dummy
7

8 trait CSL {
9 /*

10 * get and set attributes
11 */
12 def set(attributes: Map[String, Any], attrName: String, v: Any) = {
13 attributes.update(attrName, v)
14 }
15 def attr(attributes: Map[String, Any], attrName: String) = {
16 attributes(attrName)
17 }
18

19 def createHandler(context: ActorContext, com: Communication, bhv: Behavior) = {
20 val agent = context.actorOf(Props(new Handler(com, bhv)))
21 com.addHandlers(List(agent))
22 agent
23 }
24

25 def createOutlet(context: ActorContext, com: Communication, otype: String, bhv: Behavior) = {
26 val agent = context.actorOf(Props(new Outlet(bhv)))
27 if (otype == "input") {
28 com.addInlets(List(agent))
29 } else if (otype == "output") {
30 com.addOutlets(List(agent))
31 }
32 agent
33 }
34

35 // change outlet’s behavior to bhv
36 def change(handler:ActorRef, outlet: ActorRef, bhv: Behavior) = {
37 outlet.tell(Behv(bhv), handler)
38 }
39

40 // subscribe a trigger
41 def subscribe(trigger:ActorRef, inlet: ActorRef) = {
42 trigger ! inlet
43 }
44

45 /*
46 * communication operations
47 */
48 def tell(sender: ActorRef, recipient: ActorRef, msg: Any) = {
49 recipient.tell(msg, sender)
50 }
51

52 def tellm(sender: ActorRef, recipients: List[ActorRef], msg: Any) = {
53 recipients.foreach(tell(sender, _, msg))
54 }
55

56 def send(recipient: ActorRef, msg: Any) = {
57 recipient ! msg
58 }
59

60 def sendm(recipients: List[ActorRef], msg: Any) = {
61 recipients.foreach(send(_, msg))
62 }
63

116

64 def multiSend(recipients: List[ActorRef], data: List[Any]) = {
65 for ((r, d) <- (recipients zip data)) yield send(r, d)
66 }
67

68 def multiTell(sender: ActorRef, recipients: List[ActorRef], data: List[Any]) = {
69 for ((r, d) <- (recipients zip data)) yield tell(sender, r, d)
70 }
71

72 // compose operations
73 def Inputs(context: ActorContext, coms: List[Communication], ins: List[ActorRef], b: Behavior) = {
74 // create a dummy communication
75 val cc = new Dummy(context)
76

77 // create handler with behavior b, which targets ins
78 b.setTargets(ins);
79 val handler = createHandler(context, cc, b)
80 // add the created handler to the dummy communication
81 // we should also add all handlers of all communications to the composed communication
82 var handlers = List[ActorRef]()
83 coms.foreach(c => handlers = handlers ::: c.getHandlers)
84 cc.addHandlers(handlers)
85

86 // create input outlet with behavior Forwarder
87 val input = new Forwarder(context, List(handler))
88 val inlet = createOutlet(context, cc, "input", input)
89

90 // add the created outlet to the dummy communication
91 // we should also add all input and output outlets to the composed communication
92 var inlets = List[ActorRef]()
93 coms.foreach(c => inlets = inlets ::: c.getInlets)
94 // remove merged input outlets
95 inlets = inlets.filterNot(ins.contains(_))
96 cc.addInlets(inlets)
97

98 var outlets = List[ActorRef]()
99 coms.foreach(c => outlets = outlets ::: c.getOutlets)

100 cc.addOutlets(outlets)
101

102 cc
103 }
104

105 def Outputs(context: ActorContext, coms: List[Communication], outs: List[ActorRef],
106 b: Behavior, t: List[ActorRef]) = {
107 // create a dummy communication
108 val cc = new Dummy(context)
109

110 var inlets = List[ActorRef]()
111 coms.foreach(c => inlets = inlets ::: c.getInlets)
112 cc.addInlets(inlets)
113

114 // create output outlet with behavior Forwarder and target t
115 val output = new Forwarder(context, t)
116 val outlet = createOutlet(context, cc, "output", output)
117 // add the created outlet to the dummy communication
118 // we should also add all input and output outlets to the composed communication
119 var outlets = List[ActorRef]()
120 coms.foreach(c => outlets = outlets ::: c.getOutlets)
121 // removed merged output outlets
122 outlets = outlets.filterNot(outs.contains(_))
123 cc.addOutlets(outlets)
124

125 // create handler with behavior b
126 b.setTargets(List(outlet));
127 val handler = createHandler(context, cc, b)
128 // add the created handler to the dummy communication
129 // we should add all handlers of composing communications to the composed communication
130 var handlers = List[ActorRef]()
131 coms.foreach(c => handlers = handlers ::: c.getHandlers)
132 cc.addHandlers(handlers)
133

134 // change the target of composed outlets
135 outs.foreach(_ ! Targets(List(handler)))
136

137 cc
138 }
139

140 /**
141 * binding: (output, input, behavior)
142 */
143 def OutIn(context: ActorContext, coms: List[Communication],
144 bindings: List[(ActorRef, ActorRef, Behavior)]) = {

117

145 var ins = List[ActorRef]()
146 var outs = List[ActorRef]()
147 val cc = new Dummy(context)
148

149 bindings.foreach(b => {
150 // set the target of the handler’s behavior to the input outlet
151 b._3.setTargets(List(b._2))
152 val handler = createHandler(context, cc, b._3)
153 b._1 ! Targets(List(handler))
154 // merged input outlets
155 ins = ins ::: List(b._2)
156 // merged output outlets
157 outs = outs ::: List(b._1)
158 })
159

160 // add all handlers of all communications
161 // to newly created handlers
162 var handlers = List[ActorRef]()
163 coms.foreach(c => handlers = handlers ::: c.getHandlers)
164 cc.addHandlers(handlers)
165

166 // get all input outlets of all communications
167 // remove merged input outlets in the binding
168 var inlets = List[ActorRef]()
169 coms.foreach(c => inlets = inlets ::: c.getInlets)
170 inlets = inlets.filterNot(ins.contains(_))
171 cc.addInlets(inlets)
172

173 // get all output outlets of all communications
174 // remove merged output outlets in the binding
175 var outlets = List[ActorRef]()
176 coms.foreach(c => outlets = outlets ::: c.getOutlets)
177 outlets = outlets.filterNot(outs.contains(_))
178 cc.addOutlets(outlets)
179

180 cc
181 }
182

183 def delay(miliseconds: Int) = {
184 Thread.sleep(miliseconds)
185 }
186

187 /*
188 * List operations
189 * A list is a Scala list
190 */
191 def add(elem: Any, l: List[Any]) = {
192 elem :: l
193 }
194

195 def append(elem: Any, l: List[Any]) = {
196 l ::: List(elem)
197 }
198

199 /*
200 * index starts at 0
201 */
202 def get(l: List[Any], i: Int): Any = {
203 l(i)
204 }
205 def remove(l: List[Any], i: Int): List[Any] = {
206 l.take(i - 1) ::: l.drop(i - 1).tail
207 }
208 /*
209 * check whether the list is empty
210 */
211 def isEmpty(l: List[Any]): Boolean = {
212 l.isEmpty
213 }
214

215 def empty() = {
216 List[Any]()
217 }
218

219 /*
220 * return the size of the list
221 */
222 def size(l: List[Any]): Int = {
223 l.length
224 }
225 }

118

A.2 MOM2M2

1 package agents.envelope.communication
2

3 import akka.actor.{ ActorRef, ActorContext }
4 import agents.envelope.Communication
5 import agents.envelope.behavior.Forwarder
6 import agents.envelope.behavior.Aggregator
7

8 class Mom2m2(ct: ActorContext) extends Communication(ct) {
9 var recipients: List[ActorRef] = null;

10 var participants: List[ActorRef] = null;
11

12 var cond: List[Any] => Boolean = null
13 var aggr: List[Any] => Any = null
14

15 var outlet: ActorRef = null
16 var inlet: ActorRef = null
17 var handler: ActorRef = null
18

19 def launch() = {
20 println("inlet: " + inlet)
21 sendm(participants, inlet);
22 }
23 def init() = {
24 recipients = attr(attributes, "recipients").asInstanceOf[List[ActorRef]]
25 participants = attr(attributes, "participants").asInstanceOf[List[ActorRef]]
26 cond = attr(attributes, "cond").asInstanceOf[List[Any] => Boolean]
27 aggr = attr(attributes, "aggr").asInstanceOf[List[Any] => Any]
28

29 // create output outlet
30 val output = new Forwarder(context, recipients)
31 outlet = createOutlet(context, this, "output", output)
32

33 // create handler
34 val aggregator = new Aggregator(context, List(outlet), cond, aggr)
35 handler = createOutlet(context, this, "output", aggregator)
36

37 // create input outlet
38 val input = new Forwarder(context, List(handler))
39 inlet = createOutlet(context, this, "input", input)
40

41 }
42 }

A.3 Using SOM2M

1 package agents.envelope.example.som2m
2

3 import akka.actor.{ ActorRef, Actor, ActorSystem, Props }
4 import agents.envelope.communication.Som2m
5

6 import scala.collection.mutable.Map
7

8 // To run:
9 // sbt "run-main agents.envelope.example.som2m.Test 3 4 4"

10 // sbt "run-main agents.envelope.example.som2m.Test 4 3 4"
11 // yes no required
12 object Test {
13 def main(args: Array[String]) {
14 val system = ActorSystem("TEST")
15 val ya = args(0).toInt // # of yes actors
16 val na = args(1).toInt // # of no actors
17 val required = args(2).toInt // # of required
18 // Create a sender and a receiver based on EndPoints
19 val tester = system.actorOf(Props[MainTestActor])
20 tester ! SOM2MStart(ya, na, required)
21 }
22 }
23

24 class MainTestActor extends Actor {
25 def receive = {
26 case SOM2MStart(ya, na, required) => {
27 val s = context.actorOf(Props[MyActor], "sender")
28 val r = context.actorOf(Props[MyActor], "receiver")
29 // Create multiple participants
30 val yal = (for (i <- 1 to ya) yield context.actorOf(Props[YesPart])).toList

119

31 val nal = (for (i <- 1 to na) yield context.actorOf(Props[NoPart])).toList
32 var parts = yal ::: nal
33 var cond = funs.cond(ya + na, required, _: List[Any])
34 var aggr = funs.aggr(required, _: List[Any])
35

36 val som2m = new Som2m(context)
37 som2m.setAttr(Map(
38 "recipients" -> List(r),
39 "content" -> "go through",
40 "query" -> "voting",
41 "parts" -> parts,
42 "cond" -> cond,
43 "aggr" -> aggr))
44 som2m.launch()
45 }
46 case m => println(m)
47 }
48 }
49

50 // recipient actor
51 class MyActor extends Actor {
52 println(self + " created")
53 def receive = {
54 case m => println("Received " + m + " at " + self)
55 }
56 }
57

58

59 // participants who say ’yes’
60 class YesPart extends Actor {
61 println(self + " created")
62 def receive = {
63 case m => {
64 println("yesyesyes:" + sender)
65 sender ! "yes"
66 }
67 }
68 }
69 // participants who say ’no’
70 class NoPart extends Actor {
71 println(self + " created")
72 def receive = {
73 case m => {
74 println("nonono:" + sender)
75 sender ! "no"
76 }
77 }
78 }
79

80 // cond and aggr functions
81 object funs {
82 // Signature: (Int, Int, Any) => Boolean
83 // @params:
84 // total: the total number of participants
85 // required: the required number of vote "yes"
86 // l: the list of responses
87 // @return:
88 // true: terminate
89 // false: no terminate
90 def cond(total: Int, required: Int, l: List[Any]): Boolean = {
91 var na = 0 // no. of agreement
92 var nd = 0 // no. of disagreement
93 l.foreach(x =>
94 if (x == "yes") {
95 na = na + 1
96 } else {
97 nd = nd + 1
98 })
99 println("Required: " + required + " na: " + na)

100 if (na >= required || (nd + required) > total)
101 true
102 else
103 false
104 }
105

106 // Signature: (Int, Int, Any) => Boolean
107 // @params:
108 // total: the total number of participants
109 // required: the required number of vote "yes"
110 // l: the list of responses
111 // @return:

120

112 // true: succeed
113 // false: fail
114 def aggr(required: Int, l: List[Any]): Boolean = {
115 var na = 0 // no. of agreement
116 l.asInstanceOf[List[String]].foreach(x => if (x == "yes") na = na + 1)
117 if (na >= required) true else false
118 }
119 }
120

121 case class SOM2MStart(val ya: Int, val na: Int, val required: Int)

A.4 Implementing and Testing Barrier Using MOM2M

1 package agents.envelope.example.barrier
2

3 import akka.actor.{ ActorRef, Actor, ActorSystem, Props }
4 import scala.collection.mutable.Map
5 import agents.envelope.communication.Mom2m
6

7 // To run:
8 // sbt "run-main agents.envelope.example.barrier.Test 2 10"
9 // where 2 is the number of processes to be synchronized

10 // 10 is the number iterations
11 object Test {
12 def main(args: Array[String]) {
13 val system = ActorSystem("MOM2M")
14 val tester = system.actorOf(Props(new Tester()))
15 tester ! Ini(args(0).toInt, args(1).toInt)
16 }
17 }
18

19 class Tester extends Actor {
20 def receive = {
21 case Ini(arg0, arg1) => {
22 val processes = (for (i <- 1 to arg0) yield context.actorOf(Props(new SyncActor(arg1)))).toList
23

24 var cond = funs.cond(arg0, _: List[Any])
25 var aggr = funs.aggr(_: List[Any])
26 val mom2m = new Mom2m(context)
27 mom2m.setAttr(Map("recipients" -> processes,
28 "participants" -> processes,
29 "cond" -> cond, "aggr" -> aggr))
30 mom2m.launch()
31 }
32 }
33 }
34

35 case class Ini(val par: Int, val iteration: Int)
36 case class Start(val inlet: ActorRef)
37

38 class SyncActor(val it: Int) extends Actor {
39 println(self + " created")
40 var nit = it
41 var input: ActorRef = null
42

43 def receive = {
44 case "go" => {
45 if (nit > 0) {
46 println("Finish iteration: " + nit + " " + self);
47 nit = nit - 1
48 input ! "Iteration " + nit
49 println("Start iteration " + nit + " " + self)
50 }
51 }
52 case m => {
53 if (m.isInstanceOf[ActorRef]) {
54 input = m.asInstanceOf[ActorRef]
55 println("Start iteration " + nit + " " + self)
56 input ! "Iteration " + nit
57 }
58 }
59 }
60 }
61

62 object funs {
63 // @params:
64 // total: the total number of participants
65 // l: the list of responses
66 // @return:

121

67 // true: terminate
68 // false: no terminate
69 def cond(total: Int, l: List[Any]): Boolean = {
70 if (l.length == total)
71 true
72 else
73 false
74 }
75 // @params:
76 // l: the list of responses
77 // @return:
78 // "go" message
79 def aggr(l: List[Any]): Any = {
80 "go"
81 }
82 }

A.5 Output Merge Example

1 package agents.envelope.communication
2

3 import akka.actor.{ ActorRef, ActorContext }
4 import agents.envelope.Communication
5

6 import scala.collection.mutable.Map
7 import agents.envelope.behavior.Forwarder
8

9 class OutMerge(ct: ActorContext) extends Communication(ct) {
10 val c1 = new Broadcaster(ct)
11 val c2 = new Broadcaster(ct)
12 val c3 = new Broadcaster(ct)
13

14 var senders1: List[ActorRef] = null
15 var senders2: List[ActorRef] = null
16 var senders3: List[ActorRef] = null
17 var recipients: List[ActorRef] = null
18

19 def init() = {
20 senders1 = attr(attributes, "senders1").asInstanceOf[List[ActorRef]]
21 senders2 = attr(attributes, "senders2").asInstanceOf[List[ActorRef]]
22 senders3 = attr(attributes, "senders3").asInstanceOf[List[ActorRef]]
23 recipients = attr(attributes, "recipients").asInstanceOf[List[ActorRef]]
24

25 }
26 def launch() = {
27 c1.setAttr(Map("recipients" -> null, "participants" -> senders1))
28 c2.setAttr(Map("recipients" -> null, "participants" -> senders3))
29 c3.setAttr(Map("recipients" -> null, "participants" -> senders3))
30

31 val outset = List(c1.out, c2.out, c3.out)
32

33 val b = new Forwarder(ct, null)
34

35 val cc = Outputs(context, List(c1, c2, c3), outset, b, recipients)
36 addInlets(cc.getInlets)
37 addHandlers(cc.getHandlers)
38 addOutlets(cc.getOutlets)
39

40 // senders1 still use c1’s input outlets to send messages
41 // because c1’s input outlets belong to the composed communication
42 sendm(senders1, c1.getInlets)
43 sendm(senders2, c2.getInlets)
44 sendm(senders3, c3.getInlets)
45 }
46

47 }

A.6 Output-input Merge Example

1 package agents.envelope.communication
2

3 import akka.actor.{ ActorRef, ActorContext }
4 import agents.envelope.Communication
5 import agents.envelope.Behavior
6

7 import agents.envelope.behavior.Forwarder

122

8 import agents.envelope.behavior.Selector
9 import agents.envelope.behavior.Aggregator

10 import scala.collection.mutable.Map
11

12 /*
13 * This class demonstrates output-input merge.
14 * Specifically, it merges two broadcaster communications,
15 * each has one input outlet and one output outlet.
16 * The two communications are connected by a handler having
17 * forwarder behavior (defined in bindings).
18 */
19 class OutputInputMerge(ct: ActorContext) extends Communication(ct) {
20 var workers: List[ActorRef] = null
21

22 val c1 = new Broadcaster(ct)
23 val c2 = new Broadcaster(ct)
24 var senders: List[ActorRef] = null
25 var recipients: List[ActorRef] = null
26

27 def init() = {
28 senders = attr(attributes, "senders").asInstanceOf[List[ActorRef]]
29 recipients = attr(attributes, "recipients").asInstanceOf[List[ActorRef]]
30 }
31

32 def launch() = {
33 // attributes set to null because for c1, recipients is not relevant
34 // for c2, participants is not relevant
35 c1.setAttr(Map("recipients" -> null, "participants" -> senders))
36 c2.setAttr(Map("recipients" -> recipients, "participants" -> null))
37

38 val bindings = List((c1.out, c2.in, new Forwarder(context, List(c2.in))))
39

40 val cc = OutIn(ct, List(c1, c2), bindings)
41 addInlets(cc.getInlets)
42 addHandlers(cc.getHandlers)
43 addOutlets(cc.getOutlets)
44

45 sendm(senders, getInlets)
46 }
47 }

A.7 Router2

1 package agents.envelope.communication
2

3 import akka.actor.{ActorRef,ActorContext}
4

5 import agents.envelope.Communication
6 import agents.envelope.behavior.Forwarder
7 import agents.envelope.behavior.Selector
8

9 class Router2(ct: ActorContext) extends Communication(ct) {
10 var recipients: List[ActorRef] = null;
11 var parts: List[ActorRef] = null
12 var select: (Any, List[ActorRef]) => List[ActorRef] = null;
13

14 var outlet: ActorRef = null
15

16 def launch() = {
17 sendm(parts, outlet);
18 }
19

20 def init() = {
21 recipients = attr(attributes, "recipients").asInstanceOf[List[ActorRef]]
22 parts = attr(attributes, "parts").asInstanceOf[List[ActorRef]]
23 select = attr(attributes, "select").asInstanceOf[(Any, List[ActorRef]) => List[ActorRef]]
24

25 // create the output outlet
26 val output = new Selector(context, recipients, select)
27 outlet = createOutlet(context, this, "output", output)
28 }
29 }

123

